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L. Experimental Measurements and “Bulk Flow” Model Developments ~ D. Childs

The work conducted in this portion of the research contract has consisted of the
following tasks:

(a) the development of a facility and apparatus for measuring the leakage, axial pres-
sure profiles, and rotordynamic (stiffness and damping) coefficients of labyrinth
seals,

(b) the measurement of the test data cited above for a range of labyrinth-seal con-
figurations, and

(c) the development and validation of “bulk-flow” models for the prediction of leakage
and rotordynamic coefficients of labyrinth seals.

All of these objectives have been met in full and are documented in the following journal
publications:
e Childs, D. W. and Scharrer, J. K., “Experimental Rotordynamic Coefficient and
Results for Teeth-On-Rotor and Teeth-On-Stator Labyrinth Gas Seals,” ASME
Trans. J. of Engineering for Gas Turbine and Power, Vol. 108, October 1986,
pPp. 599-604.
e Childs, D. W., Nelson, C. E., Nicks, C., Scharrer, J., Elrod, D., and Hale, K.,
“Theory Versus Experiment for the Rotordynamic Coefficients of Annular Gas
Seals: Part 1-Test Facility and Apparatus”, ASME Transactson Journal of Tri-
bology, July 1986, Vol. 108, pp. 426-432.

e Nelson, C., Childs, D., Nicks, C., Elrod, D., and Hale, K., “Theory Versus Exper-
iment for the Rotordynamic Coefficients of Annular Gas Seals: Part 2-Constant-
Clearance and Convergent- Tapered Geometry,” ASME Transaction Journal of
Tribology, July 1986, Vol. 108, pp. 433-438.

¢ Childs, D., and Scharrer, J., “An Iwatsubo-Based Solution for Labyrinth Seals -
Comparison to Experimental Results,” ASME Transaction Journal of Engineer-
ing for Gas Turbine and Power, April 1986, Vol. 108, pp. 325-331.

¢ Childs, D. and Elrod, D., “Rotordynamic Coeflicient and Leakage Test Results
for Interlock and Tooth-on-Stator Labyrinth Seals,” accepted for presentation at
the ASME International Gas Turbine Conference, Amsterdam, The Netherlands,
under review consideration ASME Trans. for Power.
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II. Finite Difference Developments and Results - D. Rhode

This portion of the research program involved the following tasks:

(2)

(b)
(c)

the development of a 3-D finite difference computer code, using a generalized
body-fitted coordinate system, for predicting forces as well as the distribution of
various other flowfield quantities

the development of a procedure for calculating the rotordynamic force for a seal
with any arbitrary number of cavities at an affordable CPU expenditure

the computation of forces at various operating conditions

These objectives have been met and are documented in the following:

Rhode, D. L. and Hensel, S. J., “Three-Dimensional Computation of Rotordy-
namic Force Distributions in a Labyrinth Seal,” accepted for presentation at the
ASME/AIAA First National Fluid Dynamics Congress, Cincinnati, OH, 24-28
July 1988.

Rhode, D. L. and Hensel, S. J., “Labyrinth Seal Rotordynamic Forces Predicted
with a Three-Dimensional Navier-Stokes Computer Code,” accepted for presenta-
tion at the 24th AIAA/ASEE/ASME/SAE Joint Propulsion Conference, Boston,
MA, 11-14 July 1988.

Rhode, D. L. and Nail, G. H., “Computation of Cavity-By-Cavity Flow Devel-
opment in Generic Labyrinth Seals,” submitted for presentation at the ASME
International Computers in Engineering Conference, San Francisco, CA, 31 July
- 3 August 1988.

Rhode, D. L. and Sobolik, S. R., “Simulation of Subsonic Flow Through a Generic
Labyrinth Seal,” ASME Trans. Journal of Engineering for Gas Turbines and
Power, October 1986, Vol. 108, pp. 674-680.

Rhode, D. L., Demko, J. A., Traegner, U. K., Morrison, G. L. and Sobolik, S. R.,
“Prediction of Incompressible Flow in Labyrinth Seals,” ASME Trans. Journal
of Fluids Engsneersing, March 1986, Vol. 108, pp. 19-25.

Appendix B contains three of the most recent papers:

Rhode, D. L. and Hensel, S. J., “Three-Dimensional Computation of Rotordy-
namic Force Distributions in a Labyrinth Seal,” accepted for presentation at the
ASME/AIAA First National Fluid Dynamics Congress, Cincinnati, OH, 24-28
July 1088.

Rhode, D. L. and Hensel, S. J., “Labyrinth Seal Rotordynamic Forces Predicted
with a Three-Dimensional Navier-Stokes Computer Code,” accepted for presenta-
tion at the 24th AIAA/ASEE/ASME/SAE Joint Propulsion Conference, Boston,
11-14 July 1988.

Rhode, D. L. and Nail, G. H., “Computation of Cavity-By-Cavity Flow Devel-
opment in Generic Labyrinth Seals,” submitted for presentation at the ASME
International Computers in Engineering Conference, San Francisco, CA, 31 July
- 3 August 1988.
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The following students have participated in this portion of the AFRAPT program:
Steve Sobolik, Steve Hensel, Greg Nail, and Robert Hibbs. Steve Hensel worked at Garrett,
one summer, finished his M. S. Thesis in December 1987 and is continuing his studies for a
Ph.D. A summer position was not available in time for Steve Sobolik and Greg Nail. Steve
finished his M. S. Thesis in August 1984 and went to work for Sandia National Labs. Greg
finished his M. S. Thesis in December 1987 and is continuing his education for the Ph.D.
degree. Robert Hibbs worked last summer at United Technologies in East Hartford and
will soon finish his M. S. Thesis.

We are grateful for the sponsorship of this research program by AFOSR. As with the
test facility, the computational capability continues to be unique throughout the world.
The value of this widely applicable predictive capability has clearly been demonstrated.
Also, previously unavailable values of various shear stress quantities have been computed,
which were particularly useful in refining the bulk-flow model mentioned in the previous
section.

Further work is important and should include an analysis of the effect of geometric
configuration including stepped seals, as well as the effect of rotor orbits whose centers are
eccentric with respect to the housing.
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Copies of the three most-recent publications are included in Appendix A.

- e Hawkins, L., Childs, D., and Hale, K., “Experimental Results for Labyrinth Gas
. Seals with Honeycomb Stators: Comparisons to Smooth-Stator Seals and Theo-
retical Predictions,” submitted for the 1988 ASME-ASLE Joint Tribology Con-
ference and ASME Journal of Tribology.

- e Scharrer, J., “Theory versus Experiment for the Rotordynamic Coefficients of
Labyrinth Gas Seals: Part I - A Two Control Volume Model,” Rotating Machsnery
) Dynamics, Vol. 2, ASME 1987, pp. 427-434, accepted for presentation, ASMFE
or Journal of Vibration, Acoustics, Stress, and Reliabslity sn Design.
N

e Childs, D. and Scharrer, J., “Theory Versus Experiment for the Rotordynamic

Coefficients of Labyrinth Gas Seals: Part II - A Comparison to Experiment,”
i Rotating Machinery Dynamics, Vol. 2, ASME 1987, pp. 427-434, accepted for
. presentation, ASME Journal of Vibration, Acoustics, Stress, and Reliability in
. Design.

~-3::-(ﬁ The AFRAPT participation in this program has included the students: Joseph Schar-
¢ : - rer and Lawrence Hawkins. Joe worked at G.E. Lynn during the summer, completed his
YOt Ph.D. in January 1987 and is continuing to work in rotating machinery with Rocketdyne.
.‘ . Larry worked for Garrett during two summers, completed his M.S. degree in January 1988,
-::-\:: and is also going to work for Rocketdyne.

:'.5‘_:' The support provided by AFOSR is deeply appreciated. The test apparatus we have
NN developed with AFOSR support continues to be unique in the world. The test results
- and models have been of extraordinary value in resolving rotordynamics stability issues
SN and have been used directly to develop higher-performance commercial turbomachinery.
_-\.j} Considerable work remains to be done! No data or models are available yet for stepped
“_:Z:f seals, see-through labyrinth seals at reduced L/D ratios, brush seals, etc.
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Hawkins, L., Childs, D., and Hale, K., “Experimental Results for Labyrinth Gas Seals with
Honeycomb Stators: Comparisons to Smooth-Stator Seals and Theoretical Predictions,”

o submitted for the 1988 ASME-ASLE Joint Tribology Conference and ASME Journal of

Tribology.

. Scharrer, J., “Theory versus Experiment for the Rotordynamic Coeflicients of Labyrinth

o~ Gas Seals: Part I - A Two Control Volume Model,” Rotating Machinery Dynamics, Vol. 2,

- ASME 1987, pp. 427-434, accepted for presentation, ASME Journal of Vibration, Acous-

~ tics, Stress, and Reliability sn Design.

n Childs, D. and Scharrer, J., “Theory Versus Experiment for the Rotordynamic Coefficients

S of Labyrinth Gas Seals: Part II - A Comparison to Experiment,” Rotating Machinery
Dynamics, Vol. 2, ASME 1987, pp. 427-434, accepted for presentation, ASME Journal of
Vibration, Acoustics, Stress, and Reliability in Design.
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EXPERIMENTAL RESULTS FOR LABYRINTH GAS SEALS
WITH HONEYCOMB STATORS: COMPARISONS TO
SMOOTH-STATOR SEALS AND THEORETICAL PREDICTIONS!
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ABSTRACT
~ Ezperimental measurements are presented for the rotordynamic stiffness and damping
) coefficients of a teeth-on-rotor labyrinth seal with a honeycomb stator. Inlet csrcumferential
- velocsty, snlet pressure, rotor speed, and seal clearance are primary variables. Results are
v compared to (a) data for teeth-on-rotor labyrinth seals with smooth stators, and (b) ana-

. lytical predictions from a two-control-volume compressible flow model. The experimental

. results show that the honeycomb-stator configuration is more stable than the smooth-stator

i configuration at low rotor speeds. At high rotor speeds, the stator surface does not affect

- stability. The theoretical model predicts the cross-coupled stiffness of the honeycomb-stator

' " seal correctly within 25% of measured values. The model provides accurate predictions of
direct damping for large clearance seals; however, the model predictions and test results
diverge with sncreasing running speed. Overall, the model does not perform as well for low
clearance seals as for high clearance seals.

INTRODUCTION

Modern turbomachines can be subject to problems due to unstable or self-ezcited

motion. This type of motion is characterized by a rotor whirling at a natural frequency

that is less than its rotational speed. The unstable motion is caused by a tangential

- force acting on the rotor in its whirl direction. Several excitation mechanisms have been
identified for unstable motion (Ehrich and Childs, 1984); one of these is the force developed
in a labyrinth seal.

1This work was supported in part by NASA Grant NAG3-181 from NASA Lewis Research
Center (Technical Monitor, Robert Hendricks) and AFOSR Contract F49620-82-K-0033

(Technical Monitor, Tony Amos)
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Labyrinth seal forces are characterized by rotordynamic stiffiness and damping coef-
ficients. For small motion of a seal rotor about a centered position, the rotordynamic
coefficients are defined by the following force-motion model

AL T [

where X and Y define the motion of the seal rotor relative to the seal stator, and Fy
and Fy are the reaction force components acting on the seal rotor. The rotordynamic
coefficients (K, k, C, and c) represent the direct stiffness, cross-coupled stifiness, direct
damping, and cross-coupled damping respectively.

This report presents experimental measurements of the rotordynamic coefficients for a
teeth-on-rotor labyrinth seal with a honeycomb stator. The first systematic test program
for measuring seal rotordynamic coefficients was performed at the Technical University
of Stuttgart (Benckert and Wachter,1978,1980),(Benckert,1980). Stiffness data were pub-
lished for three types of seals: (a) teeth-on-stator, (b) teeth-on-rotor and stator, and
(c) teeth-on-stator and steps or grooves on the rotor. Wright (1983) published data on
equivalent radial and tangential stiffinesses for single-cavity, teeth-on-stator seals. Childs
and Scharrer (1986,1987) investigated teeth-on-rotor and teeth-on-stator labyrinth seals at
Texas A&M University. They measured stiffness and damping coefficients while varying in-
let tangential velocity, rotor speed, inlet pressure, and clearance. Elrod and Childs (1988)
investigated smooth-rotor/honeycomb-stator annular seals, and compared the results to
data for smooth-rotor/smooth-stator annular seals. They found the honeycomb-stator
seals to be more stable than smooth-stator seals throughout the range of variables tested.

The labyrinth-rotor/honeycomb-stator configuration was tested for several reasons:
(a) This combination is a common industrial configuration, (b) no test data for this com-
bination exists in the published literature, and (c) the results of Elrod and Childs (1988)
indicate that seals with honeycomb stators may have a stability advantage over smooth-
stator seals. The last item motivates the comparison in this report of the honeycomb-stator
seal data to the data of Childs and Scharrer (1987) for labyrinth-rotor/smooth-stator seals.
The honeycomb-stator seal data are also compared to the predictions of Scharrer’s (1987)

theoretical model.

THEORY
Stability Analysis

As a consequence of equation (1), the radial and tangential forces acting on a seal
rotor, which is executing a circular orbit of amplitude A, are defined by

F,=—(K +cw)A
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where w is the running speed. Thus, K and ¢ produce a radial force on the seal rotor, and
k and C produce. a tangential force. The radial force F, in a labyrinth seal is normally
small compared to other radial fores acting on a rotor; therefore , K and ¢ are of minor
consequence. If positive, the tangential force F, is destabilizing since it supports the
whirling motion of a forward whirling rotor. Both k& and C are positive for most practical
labyrinth seal applications; hence, the compelling reason for determining the rotordynamic
geal coefficients is to determine the relative values of k and C. The whirl frequency ratio,
defined by
f=k/Cuw,

is used in this report to compare ¥ and C. Reducing the value of f improves the stabiiity
of a rotor system.

Scharrer’s Analysss

Prediction of the rotordynamic coefficients requires a flow field model to predict the ax-
ial and circumferential pressure distribution acting on the seal rotor. Most early attempts
to model the flow field in a labyrinth seal used a single control volume, concentrating on
the circumferential low components. However, the labyrinth seal is known to have two
distinct flow regimes: a jet flow region in the leakage path and a recirculation region in the
cavity. Hence, Fujikawa et al. (1984), Wyssmann et al. (1984), and Scharrer (1987) have
developed two-control-volume analyses to accurately model the known physics of the flow.
Scharrer’s model is used in this report to generate theoretical predictions for comparison
to experimental data. ’

In Scharrer’s model, the shear stresses at the rotor and stator surfaces (r, and r,) are
modeled using the Blasius formula for turbulent pipe flow

1 UnDr\™°
T = EpU,ino (——u )

where U,, is the mean flow velocity relative to the surface upon which the shear stress is

cting, and Dy, is the hydraulic diameter of the particular control volume. No published
data are available for the friction cceflicients, no and mo, for the honeycomb-stator surface
used in the ‘*ests reported here. The following values were determined empirically from
pressure drop versus flow tests for smooth-rotor/Loneycomb-stator seals

ms — —0.1083 ns = 0.2820.

Scharrer uses a perturbation analysis to linearize the governing equations. Expanding
the governing equations in the perturbation variables yields a system of twelve linear
algebraic equations per cavity. Solution of these equations yields the pressure distribution
along and around the seal. Integration of the pressure distribution leads to the solution
for the rotordynamic coefficients.




TEST APPARATUS

The test results reported here were obtained using the Texas A&M Air Seal Test
Apparatus. The test apparatus will be described here briefly. A detailed description was
provided by Childs et al. (1986). As illustrated in figure 1, the rotor shaft is suspended,
pendulum fashion, from an upper, rigidly-mounted, pivot shaft. This arrangement allows
horizontal (harmonic) motion of the rotor. A cam within the pivot shaft provides vertical
(static) positioning of the rotor. The rotor is excited, horizontally, by a hydraulic-shaker
head which acts on the rotor-shaft housing. The design of the test rig, which is further
illustrated in figure 2, permits the installation of various rotor/stator combinations. The
test apparatus has been modified since the 1986 reference to-permit an increase in top
operating speeds from 8,000 to 16,000 cpm. Changes include the use of a hydraulically
fitted rotor, the introduction of high-speed carbon seals, and the replacement of a roller-
element thrust bearing with a Torrington, water-lubricated, swing-pad bearing. The stator
of figure 2 is supported in the test section housing by three piezo-electric, quartz, load cells
in a trihedral configuration. These load cells measure the pressure-induced forces due to
rotor motion within the stator. Accelerometers are provided on the stator to correct for
acceleration-induced forces which are measured by the load cell.

TEST PARAMETERS

The parameters varied during the tests were supply pressure, rotor speed, circumfer-
ential velocity of the inlet air, and seal configuration. Test results for six teeth-on-rotor
labyrinth gas seal configurations are presented. Three of the seals have honeycomb stators,
each with a different rotor-to-stator clearance. The other three seals have smooth stators,
each wich a clearance equal to one of the honeycomb-stator seals. The seals are illustrated
in figure 3. Seals 1, 2, 3, and 4 were tested for this study, and the data for these seals are
reported here for the first time. Seals § and 6 were tested previously and documented by
Childs and Scharrer {(1987). The data are presented here again to provide comparison to
the corresponding honeycomb stator seals (seals 2 and 3).

The test points for the other three variables are shown in table 1. The inlet air
pressure and attendant mass flow rate through the seal are controlled with a flow control
valve located upstream of the seal. Rotor speed is controlled by a variable speed electric
motor with a frequency controller. The inlet circumferential velocities are controlled using
the inlet guide vanes shown in figure 4. The guide vanes are contained in sleeves and located
immediately upstream of the test seal. The no-prerotation case is obtained without guide
vanes. High and low prerotation velocities are obtained for the different, guide-vane-depths
A of figure 4. The inlet circumferential velocity is calculated from measured values for the
volumetric flow rate, upstream temperature and pressure, and a flow-turning correction
in accordance with Cohen et al. (1972). The circumferential velocity can not be varied
arbitrarily, because it depends on the supply pressure and the flow resistance of the seal
being tested. The inlet circumferential velocity set points for each seal are shown in table
2. Inlet circumferential velocity varies a maximum of + 10% with supply pressure and
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rotor speed from the values in table 2. When reviewing the following test results, figure

'3, table 1, and table 2 should be consulted for the definitions of symbols used. Also, note

that circumferential velocity ratio is used to represent inlet circumferential velocity; this
is the ratio of inlet circumferential velocity to rotor surface speed.

As noted in table 2, the inlet circumferential velocity test point varies significantly
when seal clearance is varied. Therefore, the rotordynamic coefficients cannot be plotted
versus clearance because the variation in inlet circumferential velocity with clearance would
affect the results. The eflect of clearance is displayed by plotting the coefficients versus
inlet circumferential velocity for each seal on the same plot. This procedure allows only
one rotor speed and one supply pressure per plot.

The uncertainty of the rotordynamic coefficients was calculated using the method
described by Holman (1978). For the seal configurations tested, the maximum uncertainties
in the stiffness and damping coefficients were 15 N/mm (86 1b/in) and 32 N-s/m (0.18 Ib-
s/in), respectively. The uncertainty in the cross-coupled damping coefficients are of the
same order of magnitude as the coefficients themselves; therefore, cross-coupled damping
data are not presented here.

TEST RESULTS

Honeycomb-stator seal data are compared to smooth-stator seal data in figures 5~12.
In these figures, solid lines represent the honeycomb-stator test results and broken lines
represent the smooth-stator test results. The smallest clearance seals (seals 1 & 4) and the
highest inlet circumferential velocity (swirl 3) are used for plots in which these parameters

.are not varied. Further data are presented by Hawkins (1988).

Leakage

Leakage is represented by the flow coefficient,

_ my/RT,
" xDCrP.’

Figure 5 is a plot of flow coeflicient versus seal clearance for an inlet pressure of 3.08 bar
and a rotor speed of 3000 cpm. Curve 1 represents the honeycomb-stator seals and curve 4
represents the smooth stator seals. Leakage did not vary with inlet circumferential velocity,
thus the data presented are for inlet circumferential velocity 3 only. Examination of the
figure reveals that the honeycomb-stator seal leaks more at the smallest clearance and
the smooth-stator seal leaks more at the largest clearance. This result is consistent with
Stocker et al. (1977). One would expect the honeycomb-stator seal to leak less than the
smooth-stator seal because its greater roughness increases the flow resistance. However,
in the honeycomb-stator seal, part of the leakage air may bypass the apparent flow path
by passing into and out of honeycomb cells. Thus, relative to the smooth-stator seal, the
honeycomb-stator seal has a larger effective leakage area for a given clearance. When the
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! ;',::; clearance is small, the increased leakage area results in greater leakage in the honeycomb-
( stator seal versus_the smooth-stator seal.
b .'»1‘ ) .

"Ef- Figure 6 is similar to figure 5, except that leakage is represented by the dimensional

'\-‘§ mass flow rate. This figure shows that leakage increases as clearance increases.
e

») Direct Stiffness

o
':f.::: Direct stiffness is plotted versus rotor speed for various pressures in figure 7. Again,

S the solid lines are for the smallest clearance honeycomb-stator seal, and the broken lines

; are for the smallest clearance smooth-stator seal. Direct stiffness of the honeycomb-stator

‘ seal is negative and becomes more negative as rotor speed increases. The smooth-stator

o seal has a similar characteristic, but has a larger direct stiffiness magnitude. Direct stiffness
,_-’ becomes more negative as pressure increases for both stator surfaces. '
Ao Cross-Coupled Stiffness

°
-Z:::: Cross-coupled stiffness is plotted versus rotor speed for various pressures in figure 8. ]
N Cross-coupled stiffness increases with rotor speed for both seals. For the honeycomb-stator Y
:'Z:~ seal, cross-coupled stiffness is negative at low speed and increases to about 300 N/mm at

the highest rotor speed. For the smooth stator seal, cross-coupled stiffness has a small

) positive value at low rotor speeds, increasing to about 350 N/mm at the highest rotor

oy speed. Due to the results of Elrod and Childs (1988), cross-coupled stiffness was expected
_‘ to be less positive for the honeycomb-stator seal compared to the smooth-stator seal for all '
:" rotor speeds. The data show that the cross-coupled stifIness of the two seals have similar

magnitudes at high rotor speeds. This plot also shows that increasing pressure increases
the absolute value of cross-coupled stiffness.

[
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¥

"ﬁ Figure 9 illustrates cross-coupled stiffness versus circumferential velocity for the three 4
N honeycomb-stator seals (1, 2, 3) and the three smooth-stator seals (4, 5, 6). Figure 9(a) o
; is for an inlet pressure of 3.08 bar and rotor speed of 3000 cpm, and figure 9(b) is for

the same pressure and rotor speed of 16,000 cpm. Figure 9(2) shows that cross-coupled T
o stiffness increases roughly linearly as inlet circumferential ratio increases for both stator ;
o surfaces. The increase is greater with the smooth-stator seal. In figure 9(b), cross-coupled -
.ji:.'_‘ stifiness increases significantly from zero inlet circumferential velocity to the first positive \
PS value of inlet velocity; however, from the first positive inlet velocity to the second positive

N inlet velocity, the cross-coupled stiffness increases only slightly or in some cases decreases. 3
.- This trend is present for both stator surfaces. Returning to figure 9(a), for the honeycomb-
o™ stator seal, cross-coupled stiffness is much lower in the small clearance seal (seal 1) than
- in the larger clearance seals (seals 2 & 3). Increasing seal clearance has little effect on the

(] cross-coupled stiffness of the smooth-stator seal. At the higher rotor speed (figure 9(b)),

f_:l' seal clearance has little effect on cross-coupled stiffness in the honeycomb-stator seal. The

:j::: small clearance smooth-stator seal (seal 4) has a much higher cross-coupled stiffness than hy
" :
Pd




| ouandinadidindiieiadkediadiah s dba A do el alt et dhal S et Aot fan el Mi LB e Ma-3a ot ana il aiad os a4 o s
L ool Sag 2a2 - ar - ap ) T N W TN W e W w

o7

LA
-3

the larger clearance seals (seals 5 & 6). Note that cross-coupled stiffness of the larger
clearance smooth:stator seals does not depend on rotor speed.

s,

= Direct Damping

Direct damping is plotted versus rotor speed for various pressures in figure 10. Direct
F damping has essentially the same magnitude for either stator surface. However, damp-
ing for the honeycomb-stator seal first increases and then decreases with increasing rotor
. speed, while damping in the smooth-stator seal does not depend on rotor speed. Also,
X damping increases with pressure for both stator surfaces, but the increase is greater in the
) honeycomb-stator seal.

Figure 11 is a plot of direct damping versus inlet circumferential velocity ratio for each
seal configuration. Damping does not have a clear dependence on inlet circumferential
velocity in the honeycomb-stator seals, but increases with increasing inlet circumferential
velocity in the smooth-stator seals. Damping increases somewhat from seal 1 (the smallest
clearance seal) to seal 2. However, damping in seal 2 and seal 3 is roughly the same. In
the smooth-stator seal, damping first falls and then rises as clearance increases. This plot
is for pressure of 3.08 bar and rotor speed of 3000 cpm. The same trends are repeated at
other inlet pressures and rotor speeds.

Y
H
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[ 7

Whirl Frequency Ratio

Iy

Figure 12 is a plot of whirl frequency ratio versus rotor speed for the three honeycomb-
stator seals and the three smooth-stator seals. As noted previously, lower values of whirl
frequency ratio indicate a more stable seal. Note that at the lower rotor speeds, each
honeycomb-stator seal is more stable than the comparable smooth-stator seal, and that
for a particular stator surface, the small clearance seals are more stable than the larger
clearance seals. At the higher rotor speeds, stator surface does not significantly affect
stability. Also, the small clearance seals (seals 1 & 4) are less stable than the others at the

) higher speeds.

= £

COMPARISON TO THEORY

Data for the honeycomb-stator seals are compared to the predictions of Scharrer’s
model in figures 13-16. The ezperimental data are represented by solid lines and theoretical

:- predictions are represented by broken lines tn each figure.
v Cross-Coupled Stiffness

s

<.

Figure 13 is a plot of cross—<coupled stiffness versus rotor speed for various pressures
for the smallest clearance seal. The theory correctly predicts that cross-coupled stifiness
rises as rotor speed rises. The theory does not predict the negative values found at low

TR
PO

N



RO
O ::"\.'.s'n.

-----------------

8

rotor speeds. In general, the model predicts positive values of cross-coupled stiffness cor-
rectly within 25%. Figure 14 is a plot of cross-ccuplcd stiffness versus inlet circumferential
velocity ratio for the three honeycomb-stator seals. The model predicts a larger rise in
cross-coupled stiffness with increasing circumferential velocity than is shown in the ex-
perimental data. The model also predicts little increase in cross-coupled stiffness with
increasing clearance.

Direct Damping

Direct damping is plotted versus rotor speed for various pressures in figure 15. The
model! predicts that damping increases with increasing rotor speed, whereas the data show
that damping first increases and then decreases with increasing rotor speed. The model
consistently underpredicts the magnitude of the damping at low rotor speeds, and is accu-
rate at high rotor speeds. However, at the highest rotor speeds tested, the model predic-
tions and the test results are diverging. Figure 16 is a plot of direct damping versus inlet
circumferential velocity ratio for the three honeycomb-stator seals. The model correctly
predicts that damping does not depend on inlet circumferential velocity ratio. The model
also predicts that damping does not increase significantly as clearance increases. This is
true only at the larger clearances. :

CONCLUSIONS

The test data support the following conclusions for the labyrinth-rotor/honeycomb-
stator seals:

1) Cross-coupled stiffness is generally positive. Cross-coupled stiffness increases with
rotor speed and with inlet circumferential velocity. At the lower rotor speeds, cross-
coupled stiffness is much lower for the smallest clearance seal than for the other two
seals. At the higher rotor speeds, cross-coupled stiffness is approximately the same
value regardless of clearance.

2) Direct damping is positive, and is much lower in the smallest clearance seal than in
the two larger clearance seals.

By comparing the results for the honeycomb-stator and smooth-stator seals, the fol-
lowing conclusions may be drawn:

1) The honeycomb-stator seals leak more than the smooth-stator seals when the clearance
is small. The honeycomb-stator seals leak less when the clearance is large.

2) The honeycomb-stator seal is more stable at low rotor speeds. For high rotor speeds
stator surface does not affect stability.
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By comparison of experimental results and theoretical predictions for honeycomb-.

stator seals, the following conclusions may be drawn:

1) The model does not predict the negative values measured for cross-coupled stiffness
at low rotor speeds.

2) The model consistently predicts the positive values of cross-coupled stiffness of the
honeycomb-stator seal correctly within 25% of the measured values. The model cor-
rectly predicts the weak dependence of cross-coupled stiffness on clearance for the
larger clearances.

3) The model incorrectly predicts that direct damping increases with speed, and does
not predict the decrease in damping at small clearance. For the two larger clearance
seals the model produces good results for tested rotor speeds above 12,000 cpm. Below
12,000 cpm, the model underpredicts direct damping by 50%.

In general, Scharrer’s model gives useful results for cross-coupled stiffness in the
labyrinth-rotor/honeycomb-stator seal for the range of variables tested. Scharrer’s model
can give useful results for direct damping in the labyrinth-rotor/honeycomb-stator seal by
applying a rotor-speed correction factor to the predicted damping. Overall, the model
produces better results for the larger clearances. The increased significance of unmodeled
effects at smaller clearances — such as the unmodeled leakage path through the honey-
comb cells - is probably responsible for the reduced performance of the mode! at smaller
clearances.

Values of the rotordynamic coefficients for the two larger clearance seals tend to be
much closer together than to the smaller clearance seal. This is true for both the labyrinth-
rotor/honeycomb-stator seal and for the previously untested smallest clearance labyrinth-
rotor/smooth-stator seal. Since there are many practical applications where labyrinth seals
are used with clearances below the tested range, further testing with smaller clearances
are required.
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Direct and cross-coupled damping coefficients (Ft/L)
Radial clearance (L)

Rotor diameter (L)

Seal reaction-force magnitude (F)

Direct and cross-coupled stiffness coefficients (£/L)
Whirl frequency ratio

Leakage mass flow rate (M/Lt)

Friction coefficients

Fluid pressure (F/L?)

Gas constant for air (L2?/Tt?)

Fluid temperature (T)

Rotor-to-stator relative displacement components (L)
Kinematic viscosity (L?/t)

Density of fluid (M/L?)

Shaft angular velocity (1/t)

Subscripts
Reservoir value, radial component

Sump value
Tangential component
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Table 1. Definition of symbols used in figures.

Supply Pressure

Rotor Speeds

Inlet Circumferential Velocities

1-3.03 bar
2 - 4.46 bar
3 - 5.84 bar
4 - 7.22 bar
5 - 8.25 bar

1- 3,000 cpm
2- 6,000 cpm
3- 9,500 cpm
4 - 13,000 cpm
5 - 16,000 cpm

1 - Zero circumferential velocity
2 - Low velocity with rotation
3 - High velocity with rotation

Table 2. Inlet circumferential velocity set points.

Seal Circumferential Velocity (m/s)
Swirl 1 Swirl 2 Swirl 3

1 0.0 14.9 38.7

2 0.0 20.9 56.3

3 0.0 246 64.1

4 0.0 10.3 28.1

5 0.0 22.8 59.9

6 0.0 28.7 76.3
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THEORY VERSUS EXPERIMENT FOR THE
ROTORDYNAMIC COEFFICIENTS OF LABYRINTH GAS SEALS:
PART 1 - A TWO CONTROL VOLUME MODEL!

JosepE K. SCEARRER
MECHANICAL ENGINEERING DEPARTMENT
TEXAS A&M UNIVERSITY
COLLEGE STATION, TEXAS 77848

SUMMARY
The basic equations are derived for a two-control-volume model for compressible flow in a labyrinth seal. The

recirculation velocity in the cavity is incorporated into the model for the first time. The flow is assumed to
be completely turbulent and isoenergetic. The wall friction factors are determined using the Blasius formula.
Jet flow theory is used for the calculstion of the recirculation velocity in the cavity. Linearised seroth and
first-order perturbation equations are developed for small motion about a centered position by an expansion
in the eccentricity ratio. The seroth-order pressure distribution is found by satisfying the leakage equation
while the circamferential velocity distribution is determined by satisfying the momentum equations. The
first-order equations are solved by a separation of variable solution. Integration of the resultant pressure
distribution along and around the seal defines the reaction force developed by the seal and the corresponding

dynamic coefficients.

INTRODUCTION
The problems of instability and synchronous response in turbomachines have arisen recently becanse of

the trends in design toward greater efficiency with higher performance. To achieve these design goals, the
machines are designed for higher speeds, larger loadings, and tighter clearances. As loadings are increased
and clearances decreased, fluid forces increase and can lead to unstable or self-excited vibrations. One of
the rotordynamic force mechanisms which has been shown to cause self-excited vibration and synchronous
response in centrifugal compressors is that of the forces developed by labyrinth seals.

The flow in a labyrinth seal has been shown by experiment [1] and calculation [2,3,4] to be comprised of two
flow regimes: a jet flow region in the leakage path and a recirculating velocity region in the cavity itself (see
figure 1). The first attempts at analysis of this system neglected the axial velocity components in the flow
and concentrated on the circumferential components. This was the single-control-volume approach, used in
refs {5,6]. In an attempt to improve upon the results of these analyses, the two-control-volume approach
was introduced. The most notable of the two-control-volume analyses is that of Jenny et al. {7]. Jenny et
al. [7] used the two-control-volume approach in conjunction with a 2-D CFD solution to the Navier-Stokes
equations to account for the free shear stress between the jet flow and the cavity flow. However, they
neglected the recirculating velocity in the cavity and assumed the flow to be incompressible. Further, the
present author obtains different gigns in the expansion of the continuity equation and different perturbation
equations. These d'-cnpncia are explained in detail in Appendix D. The theory of Jenny et al. {7] showed
subetantial improvement in the prediction of stiffness and damping coeflicients, but in the end, correction
factors had to be incorporated into the calculation of the shear stress to improve the correlation with test

data.

This paper introduces the calculation of the recirculation velocity into the analysis. The mode! for the
recirculation velocity, Us, used here is illustrated in figure 2. This velocity component is important in the
calculation of the cavity shear stresses. The focus is on the shear stresses, because experimental result 8]
have shown that the stiffness and damping coefficients are very sensitive to the circumferential velocity in the
scal. In the control volume analysis to be presented, the solution to the circumferential momentum equation

1This work was supported in part by NASA Grant NASS-181 from NASA Lewis Research Center (Technical
Monitor, Robert Hendricks) and AFOSR Contract F49620-82-K-0033 (Technical Monitor, Tony Amos) /
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yields the circumferential velocity in the seal. An improvement in the shear stress calculation will yield an
improvement in the calculation of the stiffiness and damping coefficients. The CFD results of Rhode [2,3] are
used to evaluate the mqdels for shear stress and recirculation velocity used in this paper. The results of this
analysis are compared to & new get of experimental results for teeth-on-rotor and teeth-on-stator labyrinth
seals in Part 2 of this paper.

CONTROL VOLUME MODELLING

Before proceeding with the solution development, the approach taken in modelling the flow will be discussed.
As mentioned previously, the flow in a labyrinth seal is known to have two distinct regions: a jet flow region
in the leakage path and a recirculating flow region in the cavity itself (see figure 1). Therefore, a two-control-
volume model seems appropriate. The choice of control volumes is between the "box-in-s-bax™ model (see
figure 3) of Jenny et al [7] or a more conventional model with a control volume for the jet fiow and one
for the recirculating fiow in the cavity, as shown in figure 2. The two-separate-control-volume model was
chosen since it is suggested by the known physics of the flow. The flow enters the seal and separates into
two distinct flow regions which are separated by the dividing streamline.

The final question is whether the control volumes should be defined using a geometric boundary or using
the dividing streamline as the boundary. The dividing streamline approach seems, at first, to be the obvious
choice. The governing equations would be simplified by the restriction of no flow across a streamline, the
free shear stress relations are derived for flow along the dividing streamline, and the solution for the velocity
of the recirculating low may be derived for flow along the dividing streamline. Despite these advantages, the
dividing streamline approach was not used, due to mathematical constraints. The mathematical limitations
of the dividing streamline approach are dealt with in detail by Scharrer [9]. The geometric boundary approach
relies on the assumption that the dividing streamline makes a small angle with the horisontal. As will be
shown, this is a good assumption which has been verified experimentally. The geometric boundary approach
and solution is provided in the following section.

GEOMETRIC BOUNDARY APPROACH
Assymptions

(1) The fluid is considered to be an ideal gas.

(2) Pressure variations within a chamber are small compared to the pressure differences across a seal
strip.

(3) The lowest frequency of acoustic resonance in the cavity is much higher that that of the rotor speed.

(4) The eccentricity of the rotor is small compared to the radial seal clearance.

(5) Although the shear stress is significant in the determination of the flow parameters (velocxty etc. ),
the contribution of the shear stress to the forces on the rotor are negligible when compared to the pressure
forces.

(6) The cavity flow is turbulent and isoenergetic.

(7) The recirculation velocity, U3, is unchanged as it swirls within a cavity.

Procedure
The analysis presented here is developed for the teeth-on-rotor "see-through” labyrinth seal shown in figure 5.
The equivalent equations for the teeth-on-stator labyrinth seal are given in Appendix A. The continuity and
circumferential momentum equations will be derived for the two-control-volume model shown in figures 2,6,7
and 8. A leakage model will be employed to account for the axial flow. The governing equations are Liaearised
using a perturbation analysis for small motion about a centered position. The seroth-order continuity and
momentum equations will be solved to determine the steady state pressure, axial and circumferential velocity
for each cavity. The first-order continuity and momentum equations will be reduced to linearly independent,
algebraic equations by assuming an elliptical orbit for the shaft and a corresponding harmonic response for
the pressure and velocity perturbations. The force coefficients for the seal are found by integration of the
first-order pressure perturbation along and around the shaft.

GOVERNING EQUATIONS
Continusty Eguation
The control volumes of figures 2 and 6 have a unity circumferential width. Their continuity equations are:
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For the teeth-on-rotor case, A; =LCr, A; = LB, Rs; = Rs, and Re3 = Rs + B.

Momentum Eguations
The following momentum equations for control volumes I and II are derived using figures 7 and 8 which
show the pressure forces and shear stresses acting on the control volumes.

8pW,A, + 2pW;A; 8W1 + pW; 8A1 WxA; ap

3t Rey 96 T Rey 98 ' Rey 36 TV
A; 8P,
+ Wy - mW_y = "“RT T TI t5ili — thia8;L; (3)

apW,A, + 2prAz 8W3 + pr aA: WzAz ap

Bt Re; 00  Rez 30 = Raz 96
. Ay 3P,
+m Wy = —-E:—z-si -ty L + rarL; (4)

where ar and as are the dimensionless length upon which the shear stresses act and are defined for the
teeth-on-rotor labyrinth by
as; =1 ar;=(2B; + L)/L; ()
Wos is the circumferential velocity between the control volumes.
Blasius {10] determined that the shear stresses for turbulent flow in a smooth pipe could be written as
r= ZPU"‘M ( v )

where Uy, is the mean flow velocity relative to the surface upon which the shear stress is acting. The constants
mo and no can be empirically determined for & given surface from pressure flow experiments. However, for
smooth surfaces the coefficients given by Yamada [11] for turbulent flow between annular surfaces are:

mo = —-0.25 no = 0.079

Applying Blasius’ equation to the labyrinth rotor surfaces yields the following definitions for the rotor shear
stress in the circumferential direction. Note that the recirculation velocity, Uy, is included in the definition
of the total velocity acting on the rotor.

= %Pﬁlbw ~ W3)3 + U2 (Regw — W3) nr ( V(Rezo ~Wa) + IE‘D"‘) (e)

1 4

where D), is the hydraulic diamter of control volume II, defined by
Dygi = 2B; L; [(B; + L;) (7

Similarly, the stator shear stress in the circumferential direction is:
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i :.: where Dy,; is the hydraulic diameter of control volume I, defined by
b
( " . Dhyi = 201 L/ (Cri + L) ()
:.-: and the axial velocity, U, is
o
T Uy = m/pCr; (10)
A ::' Figure 9 shows a comparison of the predictions from equation (8) and CFD results for stator wall shear stress
Oy for seal A of table 1. The figure shows that the comparison is very good. Similar results are obtained for the
. other seals of table 1. Figure 10 shows a comparison of rotor wall-shear-stress predictions from equation (6),
_::-' CFD and averaged CFD for seal A of table 1. The averaged CFD results is used here for comparison since
) :: the bulk flow model yields a single averaged result for cavity shear stress and is not capable of modelling
‘A the complex flowfield.The figure shows that the prediction of equation (6) is close to the CFD results.The
T dips in the CFD results are the lower corners of the cavity. Similar results are obtained for the other seals
. of table 1.
~\ Table 1. Seal geometries calculated by Rhode.
o Seal
- A B C D
'." Rs 72.5043mm 72.5043mm 72.5043mm 41.780mm
o B 3.176mm 3.175mm 8.175mm 0.889mm
e L 3.175mm 8.175mm 3.969mm 0.8585mm .
N Tp 0.35mm 0.35mm 0.35mm 0.15mm
e Cr 0.4064mm 0.508mm 0.508mm 0.2159mm
>
P The flow across a labyrinth tooth is very similar to the flow of a turbulent jet issuing from a slot. The problem
- with using jet-flow results for labyrinth seals is that current jet-flow theory only considers the flow of a jet with
- a coflowing stream or a crossflowing stream, not both. In the following derivation, the relationshipe given by
e Abramovich [12] for the velocity profile of a semi-contained, one-dimensional, turbulent jet with a coflowing
b - stream are assumed to apply for the two-dimensional labyrinth seal flow. According to Abramovich (12}, the
-~ velocity profile for such a flow can be shown to fit the following function when compared to experimental
s ‘.'1 results: 2
)
- 1872
v=u; +(n—v) [l - (U—v—’) ] (11)
N b .
-::'_: where the coordinate y, the mixing thickness b, and the boundary layer thickness g, are defined in figure i
e 11. The relationship between the boundary layer thickness and the mixing thickness was found [12] by
_?_ comparison to experiment to be: :
) _x:. :
C:S;'. y2/b = 0.684 — 0.134(v; /v, ) (12)
'»:: Once the velocity ratio across the dividing streamline, v3/v;, is found, equation (12) reduces to a constant. j:
e, The total free shear stress is found using Prandtl’s mixing length hypothesis [13}): -
@
. dv|[fa8v .
w5 (5) U
where the mixing length, £, for a labyrinth seal, has been determined from the calculations of Rhode (2,3] to
be:
o £ =0.275b (14)
::::: Table 1 shows the seal geometries calculated by Rhode [2,3]. The mixing length, ¢, given in equation (14) '
-'_:. is the most sensitive factor in this solution. The large magnitude of the mixing length shows the high |
L
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turbulence level of the labyrinth flow as compared to similar flows. The typical values given for the mixing
lengths of rectangular and round jet flows, in one dimension, are in the range of 0.07 to 0.09. Without the
CFD results, one of these values would have to be used and the results of using £/5 in the range [0.07,0.09)
would have been disappointing.

Jenny et al. [7] used a 2-D CFD code to obtain a correlation for £/b as a function of clearance and tooth
geometry. Their relation is shown below for the teeth-on-rotor case:
£/b = 0.055(1 + 1.03Cr/L + 0.084/Rs/L) (15)

However, their shear stress relation neglected the recirculating velocity component, U;. Upon comparison
with the data of Rhode [2,3], the mixing length ratio, £/b, was fovnd to be relatively constant when the
shear stress is calkculated using all velocity components.

Substituting the differentiated version of equation (11) and equation (14) into equation (13) yields an ex-
pression for the total froe shear stress. At the interface of the two control volumes (y=0), the total free shear
stress is:

e 0850 =) 1 - (%)"‘]’ (%) (16)

The circamferential component of the free shear stress is:

=086/ oW + 03 - U v - wa) [1- (2) ] (%) (x7)

The circamferential component of velocity at the interface, W, is obtained from equation (11).

Woi =W, + (W3 — W;) [1 - (!:-) ”]’ (-‘;1) (18)

Equations (16,17,18) are all valid along the dividing streamline. Since the control volumes are defined
geometrically and not by the dividing streamline, the shear stress calculated using the above equations is
assumed ¢o be close to that existing along the geometric boundary line. This is a good assumption considering
that the angle of the dividing streamline from the horisontal has been found experimentally to be on the
order of 6 degrees by several investigators [14,15).

The analysis to this point is incomplete in that the recirculation velocity , Us, and the relationship between
the mixing thickness and the boundary layer thickness, y, /5, are undefined. The following section presents
the jet flow theory used to determine the recirculation velocity, U,, and subsequently y3/b. The discussion
is rather lengthy, but the final result is relatively simple.

Determination of the recirculation welocsty

As mentioned previously, there is no clased-form solution for the flowfield present in a labyrinth seal cavity.
The flow is highly three dimensional and completely turbulent. An approximation for the velocity profile
can be obtained using the theory for the iow of a two-dimensional, turbulent, isoenergetic, half-infinite jet.
Figure 12 shows the model for this theory. The flow is assumed to enter with one velocity component, in the
x-direction, and spread into the cavity developing a y-component of velocity. The model does not account
for the circumferential velocity component which, is the same order of magnitude as the axial velocity, in &
labyrinth seal flowfield. The solution procedure involves solving the infinitessimal form of the x-momentum
equation for the dimensionless velocity profile and then solving the integral form of the continuity and
momentum equations in order to determine the dimensionless velocity along the dividing streamline.

The following is a summary of the derivation of the equations necessary to determine the dimensionless
velocity along the dividing streamline. A complete discussion of this theory can be found in Korst et al. [16]
and Scharrer [9]. The following derivation uses the assumption that the curvature in the dividing streamline
is small The infinitessimal form of the x-momentum equation which has been reduced using the continuity
equation is: '
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! . where ¢ is the apparent (turbulent) kinematic viscosity and the x and y velocity components, u and v,
:5;- respectively, are time averaged. Since the flow illustrated in figure 12 is a quasi-one-dimensional jet flow
D where there is little or no initial vertical velocity component, equation (19) can be linearised using a small
K perturbation method. The following simplified equation of motion is obtained:
1\
)
! v 8%u"
) 1% = (20)
) ::- Here the turbulent viscosity is expressed in a modified form of Prandtl’s exchange coefﬁcnent €, 8o that after
< j introducing the dimensionless variables
12 - '
::; 6= U - 14+
U. U‘
D" V
S (==
oo é (21)
o *=3
1N _ ¥8US(¢)
L =23
®
o where  f($) — 10 as ¢ — oo
f-'_::; and by the transformation
e = [* $1(¥)dy
- o 203
_. the following formulation of the equation of motion is obtained
Pl 3¢ _ 3% ‘
== 22
. o )
' with the initial conditions -4
] é=¢(0,¢)=0 for —o0<¢<O P
vl ¢ = ¢(0,¢) = ¢.(c) for 0<¢<10
:_1: é=4(0,¢)=10 for 10<¢<oo 4
;'.‘:-: and boundary conditions )
. $=4(-0)=0 for £<0 j
% $=4€0)=10 for £>0 '
:::f' Here § is the initial boundary layer thickness shown in figure 12. o is the jet spreading parameter which bas rl
e been found experimentally by Korst and Tripp {17] to fit the following equation: "
L] o=120+42.758M, for air (23) B
. The solution to equation (22) for the above initial and boundary conditions is: ‘S
- 1 (" $(n=8) _p
W é=0S5[1—ecrf(n, —n)]+ —/ e~ dp 24
'-j ' ’ \/; n-n, P ( ) '
] where n,, the position parameter is given by
1 X
% G R :




The error function, erf(x), is defined by

. erf(z) = 72:/0 e-?dg
where  erf(-z) = —erf(z)
Looking at a limiting case of equation (24):

This limiting case is for either no initial boundary layer, which is a good assumption for labyrinth seals, or
fully developed velocity profiles. Since n, — 0, the variable n is now undefined. Liepman and Laufer [18]
have shown that g for this imiting condition is:

.y (25
Goertler [19] has shown that the dimensionless velocity ,@, follows directly from equation (24) when n, — O:
6= 051+ erf(n) .8

Equation (26) is a solution for the dimensionless velocity profile, ¢, at any dimensionless position,n. The
goal of this development is to determine the dimensionless velocity, ¢,, along the dividing streamline whose
dimensionless position is n;. The dimensionless dividing streamline poeition, n,, can be obtained by solving
the integral form of the continuity and x-momentum equations for the system shown in figure 12. Equations
(23,25 and 26) are used to obtain the solution to the integral equations which are to be derived next.

Control Volume Analysis

The coordinate systems and definition of the control surface are shown in figure 12. The (x,y) coordinate
system is the intrinsic coordinate system while the (X,Y) coordinate system is the reference system.Equations
(25) and (26) are approximate relations; exact relationshipe, if known, would provide for conservation of
momentum for the constant pressure mixing region. The reference coordinate system is the coordinate
system in which momentum is conserved. The intrinsic coordinate system is located with respect to the
reference coordinate system by a control volume analysis utilising the conservation of momentum principle
for this constant pressure mixing region. The relationship between vhe coordinate systems normal to the jet
is:

¥m(z)=y-Y with y,(0)=0.

X-Momentem Equation
The steady flow x-momentum equation for the jet fiow shown in figure 12, written for the intrinsic coordinate
system and expressed in the previously defined dimensioless variables is:

1.0 P .2 e LT
"P/ —¢odf+'lﬂ_ﬂl=/
o A -

£ 42dn +nm (27)
141
where distance R is chosen such that:

1-4¢(ng) <<<1.0

For the momentum equation, the lower control surface is located at ~o0o. This equation contains no surface
forces. This is realistic for a labyrinth seal if location R is chosen far from the stator wall. Applying the
condition of no initial boundary condition (1, — 0) equation (27) is:
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Continuity Equation
The steady flow continuity equation, written for the intrinsic coordinate system and expressed in the previ-
ously defined dimensionless variables is:

anr

1.0 P
'Ip/ —éodf'*"m"'lp:/
o A ny

For the continuity equation,the Jower control surface is coincident with the jet dividing streamline. Substi-
tuting the results of the momentum equation, equation (27), into equation (28) yields:

£ 4dn + nm (29)

an p) 1.0 P) (1] p)
[ Lbin= [T Lu-sdc+ [ Lpan (30)
0 Pl o A - P1
Making the assumption of no initial boundary layer (7, — 0), equation (30) becomes:
" ax :
[ o= [" Lpay (31)
ny A1 !

The density ratio, (p/p1), for isoenergetic flow (constant temperature) is given as:
e __(1- Ca?)
i (1-Caig?)

The final form of the continuity equation becomes:

an ¢ _ [T} ‘2
/-. C=cag) - /_,, i-caem ™ (33)

i

(s2)

where Ca is the Crocco number. Equation (33) can be numerically integrated for a given Crocco number
using the definition for ¢ given in equation (26). The Crocco number is defined as:

2 _ (- 1)M7 :
Ce = -0 ¢4
The Crocco number is a dimensionless velocity similar to the Mach number. The Crocco number uses the
maximum isentropic speed of a gas while the Mach number uses the local speed of sound. The Mach number
varies between 0 andoo while the Crocco number bas & range of 0 to 1.

The solution to equation (33),the location of the dividing streamline, can be obtained by the following stepe:

0) Calculate the Mach number using the seroth-order leakage value.The seroth-order leakage is discussed
in the next section.

1) Calculate the Crocco number using equation (34).

2) Substitute equation (26) into equation (33) and integrate the error funciion. The value of the error
function at the limits R and —oo is 1.0, leaving an equation in 5, only. This is solved for n; which is the
dimensionless location of the dividing streamline.

3) Insert 5, into equation (26) to obtain the dimensionless velocity along the dividing streamline, ¢;.
The results of this solution procedure are tabulated in table 2, for air. For air (7 = 1.4) flowing in a labyrinth
seal, the maximum possible Mach number is 1.0. Therefore, the maximum possible Crocco number is 0.408
or Ca? = 0.167. The range of solutions is:

0.61632 < ¢, < 0.6263

Using an average solution of ¢, = 0.62 gives a maximum error of less th n +1 percent. The recirculation
velocity at the interface is:
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s,
.

Us; = 0.62U, (35)

The only remaining prdblem is the numerical definition of y;/b. Looking back, equation (11) and equation
(26) both describe the axial velocity profile in the jet flowfield. If the following observation is made
va

— ~ .
U "

then equation (35) can be substituted back into equation (12) yielding the following numerical definition for
/b .

l"b- = 0.5684 — 0.1344, = 0.5

It is interesting to note that Jeany et al [7] assumed that g3/b = 0.5.

Figure 13 shows a plot of the dimensionless axial velocity profile in the recirculation region for seal A of
table 1 as calculated by Rhode [2,8]. This profile is for the center of the recirculation region to the top of
the labyrinth tooth. The intersection of the two dashed lines is the location and value of the theoretical
recirculation wvelocity as calculated using equation (35) and the assumption that the dividing streamline
makes an angle of 6° with the horisontal. The agreement is excellent. Again, equation (35) was derived
using & 2-D theory which neglects the circumferential velocity component. Equation (35) is actually the
velocity at the interface of the two control volumes. The velocity components used in the shear stress
equations are all average velocity components. To be consistent, the average recirculation velocity must be
used. The CFD results show that the velocity distribution is parabolic in nature. Integrating this yields:

U, = 0.206U, (se)
Table 2. Tabulated solution to equation (33).
Ca? é; Ca? é;
0.00000 0.61632 0.68000 0.67553
0.05000 0.61915 0.72000 0.68188
0.10000 0.62211 0.76000 0.68903
0.15000 0.62523 0.80000 0.69724
0.20000 0.62848 0.84000 0.70689
0.24000 0.63129 0.88490 0.713044
0.28000 0.63405 0.88360 0.719944
0.32000 0.63725 0.90250 0.726834
0.36000 0.64047 0.92160 0.734949
0.40000 0.64387 0.94090 0.744883
0.44000 0.64748 0.96040 0.757869
0.48000 0.65132 0.98010 0.77T7432
1.62000 0.65543 0.992016 0.798766
0.56000 0.65979 0.958001 0.823427
0.60000 0.66462 1.000000 1.000000
0.64000 0.66982
Reduced Egquations

The solution of the governing equations can be simplified by reducing the number of equations by one. This
reduction is accomplished by using equation (2) to eliminate mr from the other equations. The continuity
equation for control volume I becomes:

dpA1 oW1 A, . . BpA; AW A;
at Ray 86 e - m at + Rs,36 =0 (37)

If equation (37) times the circumferential velocity, W, is now subtracted from equation (3), the following
reduced form of the momentum equation for control volume [ is obtained:
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Similarly, if equation (2) times the circumferential velocity, W5, is subtracted from equation (4), the reduced
momentum equation for control volume II is obtained.

pA;
at Re, 86 (38)

T4 (Wi = Wyog) =~ + 75l — riia8, L,

8W3 szA; 8Wg 8pA3 8pW3 Az . i
Pt Rey 8 T ( 3t T Rejas ) Wa Wl (59)
L] + vjeLi — trariL;
Raz 86 7945 T Tean .
The number of variable is reduced by using the ideal gas law to eliminate the density terms.
P, = piRT (40)

Leakage Equation
To account for the leakage mass flow rate in the continuity and momentum equations, the following model
was chosen.

. P2 -P?
i = pipai B -'—l—"RT (41)
where the kinetic energy carryover coefficient, u; is defined by Vermes [20] for straight through seals as:
1
= ———— 42
N ( 1— a)* ( )

8.52
(LazZed + 713)

and is unity, by definition, for the first tooth of any seal and all the teeth in interlocking and combination
groove seals. This definition of the carryover coefficient is a local coefficient which can be perturbed in the

where a=

“clearance. The previous analyses by Childs and Scharrer (6] and Jenny et al [7] used a global definition

which could not be perturbed.
The flow coefficient is defined by Chaplygin [21] as:

« P\
Pri = where o= —'—-l-) -1 (43)

x+2—5s; +2s2 P;
This flow coefficient yields a different value for each tooth along the seal as has been shown to be the case
by Egli [22]. For choked flow, Fliegner's formula [23] will be used for the last seal strip. It is of the form:

. 0.510
myc = —\/"R—_;’PNOHNC (¢4)

Perturbation Analysis

For cavity i, the continuity equation (37), momentum equations (38,39) and leakage equation (40) are the
governing equations for the variables Wy Wy, P ;. A perturbation analysis of these equations is to be
developed with the eccentricity ratio, ¢ = ¢,/C'r, selected to be the perturbation parameter. The governing
equations are expanded in the perturbation variables:

},.'=P°.'+¢P1.' H.'=CT.'+¢Hl

Wy = Wi + Wy A=A, +elH,
W = Wao + Wy

el :.-_ \..»__.r,.f\-; ._f\ _' &. ;. -\."' z&ru- ‘.("".'Jl-



where ¢ = ¢,/Cr; is the eccentricity ratio. The serotb-order equations define the leakage mass flow rate and

. the circumferential velocity distribution for a centered position. The first-order equations define the per-

i turbations in pressure and circumferential velocity due to radial position perturbation of the rotor. Strictly
speaking, results of a first order analysis are only valid for small motion about a ceatered position.

Zeroth-Order Solution

';:‘ The seroth-order leakage equation is
41 =i+, (45)
and is used to determine both the leskage-rate, m, and pressure distribution for s centered position. The
- leakage-rate and cavity pressures are determined iteratively, in the following manner. First, determine
whether the flow is choked or not by assuming that the Mach number at the last tooth is one. Then, knowing
":.: the pressure ratio for flow at eonic conditions, the pressure in the last cavity is found. The mass flow can
., be calculated using equation (44). Working backwards towards the first tooth, the rest of the preasures can

be found using equation (41). The final pressure calculation will result in the reservoir pressure necessary

" to produce the sonic condition at the last tooth. If the actual reservoir pressure is less than this value, then
N the flow is unchoked. Otherwise, it is choked. If the fiow is choked, a similar procedure is followed, but now
the pressure in the last cavity is guessed and s mass flow rate calculated using equation (44). The remaining
-~ pressures are calculated using equation (41). This is repeated until the calculated reservoir pressure equals
i the actual reservoir pressure. If the flow is unchoked, the pressure in the first cavity is guessed and & mass
- Sow rate calculated using equation (41). The remaining pressures are calculated with the same equation.
This procedure is repeated until the calculated sump pressure equals the actual sump pressure.
The seroth-order circumferential-momentum equations are
Mo(Wioi — Wisic1) = (fjoi — feciass) L (486)
” fy0ili = Troiari L (47)
Hl From calculated pressures, the densities can be calculated at each cavity from equation (46), and the only
- unknowns remaining in equations (¢6) and (47) are the circumferential velocities Wy, and W, Given an
N inlet tangential velocity, a Newton-root-finding approach can be used to solve equations (46) and (47) for
the i-th velocities, one cavity at a time. This is done starting at the first cavity and working downstream.
i First-Order Solution '
. The governing first-order equations (48,49,50), define the pressure and velocity fluctuations resulting from
the seal clearance function. The continuity and momentum equations follow in order:
N 8Py  _, 8P Wy ., OW,
G 8: + Gy 8;‘ + G 8;‘ +G«'-—-a:“ + Gei Py
OH, 8H,;
“ + Gei Pii-1 + G1:Pri41 = —Gui Hyi — Goi 8: - Gio 801 (48)
' Wi | XuuWis 3Wyy  XoiWaui]| 8Py, ,, 3Py
. ey e T TR A e TR
S .P.. 8W.
’ + XoiFoi SWan + X Pri + Xgi Pri—1 + XeiWipi + XoiWay
Rlz a6
= ~ meWiy—1 = XecHyg (49)
- AWy | [YaiPo | YiiWaoi | dWas L YaWaa | 9Py
YZ=%e *| R * TR |50 [y" *“FR., | 96
',':: Yx%};‘i + Y Pii + YeWayi + Yo Prio1 + YW = Yo By (50)

where the X's, Y's and G's are defined in Appendix B. These perturbation equations are very different from
those of Jenny et al. (7] because their analysis neglects pressure perturbations in the leakage and shear stress
e equations, and assumes that the density is constant.




If the shaft center moves in an elliptical orbit, then the seal clearance function can be defined as:

¢H., = —acoswt cosl — b sinwt siné

= —g[coa(ﬂ — wt) + cos(f + wt)] ~ ;[coc(ﬂ — wt) — cos(6 + wt)] (51)

The pressure and velocity fluctua’isns can now be stated in the associated solution format:

Py; = PXcos(d + wt) + Plein(0 + wt) + P cos(0 — wt) + P ein(6 ~ wt) (52)
Wi = Witicos(0 + wt) + Wi ein(0 + wt) + W cos(0 — wt) + W ;ein(f — wt) (53)
Wayi = Wiicos(d + wt) + Whiain(0 + wt) + Wi cos(8 — wt) + Wi sin(f — wt) (54)

Substituting equations (51), (52), (53) and (54) into equations (48), (49) and (50) and grouping like terms
of sines and cosines (as shown in Appendix C) eliminates the time and theta dependency and yields twelve
linear algebraic equations per cavity. The resulting system of equations for the i-th cavity can be stated:

(Aima](Xima) + (A 4 [Airal(Kir) = 2(8) + 2(C) (55)

where

=)

(xt'—l) = (P:-llpg—l' ;-u c.:'-l'W]to‘—hW;"ei-lvwl-oi—hwx-d-nwzz—n Wzt.‘—nw;n'—lvwz.a‘-l)r
(X-') = (P:oP:- P.?.PJ.W&: Wl‘"a'l Wl-u'v Wl:!‘n Wztc" Wz*;.'nwz-n'- Wz‘;)r

(x"-i-l) = (P;:"-O-h P;-HoP;-H- Pg#lvwﬁi-ﬂnwfa'i»u Wx-n'+nwl-a’+hwzti+hwzi+h Wz-oi+lr W;a'-l-l)r

. B

The A matrices and column vectors B and C are given in Appendix C. To use equation (55) for the entire
solution, a system matrix can be formed which is block tridiagonal in the A matrices. The sizse of this
resultant matrix is (12NC X 12NC) since pressure and velocity perturbations at the inlet and the exit are
assumed to be sero. This system is easily solved by various linear equation algorithms, and yields a solution
of the form:

4 b e

. _»

Pi =R+ 2R
b
P;=2F . +-Fg, -
: : (s6) o
PG =-FL+-FL

-_a._ b ::):

FPs= :Fca' + ¢Fc-e.' =

DETERMINATION OF DYNAMIC COEFFICIENT N
The force-motion equations for a labyrinth seal are assumed to be of the form: \\j

Fl_[K k]fx c c]fx -
{E1-[5 {7} (S el {F @ ¥
The solution of equation (57) for the stiffness and damping coefficients is the objective of the current analysis.

The solution procedure used for thia analysis is the same one used by Childs and Scharrer [6]. The desired N
solution for the stiffiness and damping coefficients is: :'

-----
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. NC
i K =1xRs E(i’; + F_;)L;
= i=1
NC
5 k= xRs Z(F.t; + Fo )L
s> =
v . (58)
R
' C—‘:_:Z(F.““‘F;‘)Lq
\.’ R ‘:]
c= *—-‘z(r.:, + FC)L:
\-:'( =1
~ SOLUTION PROCEDURE SUMMARY
In review, the solution procedure uses the following sequential steps:
- a) Determination of whether the flow is choked or not using equations (41) and (¢4).

b) The steady-state pressure distribution and leakage are found using equation (41) and/or (44).

<) The steady-state circumferential velocity distribution is determined using equations (46) and (47).

d) A system equation is formed for the first-order perturbation variables and solved using the cavity
equation (55).

¢) Results of this first-order perturbation solution, as defined in equations (56), are inserted into equation
(58) to defined the rotordynamic coefficients.

N CONCLUSIONS
' This paper has presented a new two-control-volume analysis for the rotordynamic coefficients of labyrinth
gas seals which, for the first time, accounts for the recirculation velocity in the seal cavity. The analysis
o was developed in conjunction with a 2-D CFD model which was used to verify the shear stress and jet flow
[ models used. A comparison between the CFD results and the results from the "bulk flow” model of this
paper showed the following:
1) The new two-control-volume model accurately predicts the stator wall shear stress for a teeth-on-rotor -

o labyrinth seal cavity.

2) The new model predicts the cavity wall shear stress within 25 percent of the CFD results for a

. teeth-on-rotor labyrinth seal.
. * 8) The 2-D jet flow theory used in the new model accurately predicts the magnitude of the recirculation
; velocity along the dividing streamline.
4) The CFD results show that the mixing length parameter, £, used in the free shear stress equation is

.::: relatively constant and need not be considered a function of cavity geometry as was assumed by Jenny et
al [7].

The final test of the model, a comparison between experimental results for stiffness and damping coefficients
b and the predictions of this model, will be carried out in Part 2 of this paper.
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%
RN A Cross-sectional area of control volume (L3); illustrated in figure (6)
{ - B Height of labyrinth seal strip (L); illustratedin figure (5)
“hen C Direct damping coefficient (Ft/L)
S Cr Nominal radial clearance (L); illustrated in figure (5)
'y Dy Hydraulic diameter of cavity (L); introduced in equation (6)

H Local radial clearance (L)

K Direct stiffness coefficient (F/L)

L Pitch of seal strips (L); illustrated in figure (5)

NT Number of seal strips

NC=NT-1 Number of cavities

P Pressure (F/L?)

R Gas constant (L3/T¢?)

Rs Radius of control volume (L); illustrated in figure (5)

Rsw Surface velocity of rotor (L/t)

T Temperature (T)

Tp Tooth tip width (L); illustrated in figure (5)

U Average axial velocity for control volume (L/t); in figure (2)

W Average circumferential velocity for control volume (L/t); iliustrated in figure (2)

¥y W, Average circumferential velocity in the interface between control volumes I and II (L/t); introduced in
P equation (18)

I a,b Radial seal displacement components due to elliptical whirl (L); introduced in equation (51)
Y ar, as Dimensionless length upon which shear stress acts; introduced in equation (3) and (4)
RACN ¢ Cross coupled damping coefficient (Ft/L); in equation (57)

SN ¢, Displacement of the seal rotor from centered position (L)

s k Cross coupled stifiness coeflicient (F/L); in equation (57)

{ rn Leakage mass flow rate per circumferential length (M/Lt)

o mr, or, ms, ns Coefficients for friction factor; in equation (3)

b t Time (t)

ot v Total velocity (L/t); introduced in equation (11)

w Shaft angular velocity (1/t)

p Density of fluid (M /L’)

v Kinematic viscosity (L?/t)

€ = ¢,/Cr Eccentricity ratio

¢ Turbulent viscosity (F¢t/L?); introduced in equation (19)

4 Ratio of specific heats

Subscripts

o Zeroth-order component
1 First-order component, control volume I value
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iog x X-direction
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5 f‘: APPENDIX A: GOVERNING EQUATIONS FOR TEETH-ON-STATOR SEAL
NS ' .
Sigth Reduced Eguations
i" ‘ The main difference between the teeth-on-stator equations and the teeth-on-rotor equations occurs in the
o momentum equations. The shear stresses acting on control volume [ are now the rotor shear stress, ., and
; NS the free shear stress, r;. Similarly, the shear stresses acting on control volume 1I are now the stator shear
::\: stress, 7,, and the free ghear stress, r;. These differences are evident in the reduced form of the continuity 1
R \:';« and circumferential momentum equations given below:
1 :-f: Continusty |
v )
' apA, apW1A1 . . apAg apW3A2
o . -—me =
Dt at Rs, 86 oMt =5 Re;36 (41)
L
:::-_.‘ Momentum I
g BW, pr Al an apA: 8pW3A3
e W
‘ P * “Re, 98 T\Tat T Reges ) Mo W)
o A, 3P; (42)
g + (Wi ~ Wy) = “TRa; 9 ki~ reonils
T Momentsm IT
N
o aWs  pWahy W  (3pAs _3pWahy
oo P Y Rey a8 T ( 3t T “Raeya0 ) (Was - Wei) (43)
;-:‘: =_—4la_-P‘-_f..L._f.a‘.L‘:
\:‘ Rsy; 36 T e
o where as and ar are defined as:
'_"\ as; = (2B; + L;)/L; ari =10
E:::E: The rotor shear stress in the circumferential direction is now defined using the smaller hydraulic diameter r
S and the velocity components of control volume 1.
o
) e |
~ N/ — 2 .
b ':"" Te = %p\/(Rc;w - Wx)2 + U? (Rc;w - Wx) nr ( (R‘xw ‘V:) + WD'“') (A()
o where Dy, is the hydraalic diameter of C.V. I, defined by:
e
g
e. Dy = 2Cr; L /(Cri L) (45)
‘.::f}_ Similarly, the stator shear stress in the circumferential direction is now defined using the larger hydraalic
‘-:::- diameter and the velocity components of control volume II.
- l
o

1 NZEY: 8
—a :
T, = 3 W2 + U2 Wane (—3——2-—” A2 ) (48)

N where Djj; is the hydraulic diameter of C.V. II, defined by:
S
NN Dy = 2B;Li/(B; L) (A7)
®
o The definition of the free shear stress remains the same. However, since CFD results were only available
'.‘ for the teeth-on-rotor configuration, the sensitive mixing length ratio, £/4, may change for a teeth-on-stator
oo seal.
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Zeroth-Order Eguations

Continuity
) Moit1 = Mo (A8)
Momentum [ and I
Mo(Wioi = Wici-1) = (T5e — Teciasi) L (49)
10 Li = froiariL; (A10)

First-Order Equations
The first-order equations remain exactly the same as before. Since changes were made in the locations and
definitions of the rotor and stator shear stress terms, the following changes in the coefficients of the first-order

equations are necessary:

- 2ella = Flle | Pallu = PtlI D s )i+ 1) - B
_ 1ri(1+ mr)Uyi Liar; 15i(Uas = Usi) Li(¢ = 1) ]

(Ra;w - PV;.')2 + Ul" (Wz.' - Vb’u)2 + (Uz.' - Uu)3
x [-Un UsiPoi _ 81U (481 - 8)(v - 1) (Si + 1)] _ Tari(1+mr)L;

X.=

P, Pi_,-P3 %7 Pox Py
_o(Wi =Wiiet)Poit (Wi —Wiica)(v-1) o (Pa'-l 5
Xe = P:'-x - P: xyFPoi “h(wh 5) Poi
_ [ trar; Li(1 4+ mr)Uy 15i(Ua — Upi)Li(¢ — 1) ]
(R&l(d - W;.-)’ + U?" (Wﬁ - W;;)’ + (UQ‘ - t]ll')2
UpiPucy_ wilni(45 = 5)(y = 1) (P,-_,)‘v*
Fi_,-F} w1 FPoi Fos
. f,‘-df"L" f"'df.'L"(l -+ mr)(R:lw - Wl.') f'.'L.' f','(Wz.' - Wl)L
X, = i i i) L
6 =mo+ Rsyw — Wy; + (Royw — Wy)3 + U + Wy — Wy (Wi — Wy )2 + (U — Uy)?
x, o1 =Waina) [} (L =Tpo) (= 1)?) _ mariLmrDais
* Cr 17.04Cr; \ pai 2Cr?
_ =t Uy Poi p1:U1 (451 = 8)(v-1) o
Y‘—[Pa' Fi_ - F% w7Fo Bu+1)
8 [r..—(l + ms)$Us; Lias; 15:(Ua — Uri) Li(é ~ 1) ] + riili _ tei(1+ me)as; Li
W2 + UZ (Wax —Wy)? + (Uai - Uni)?] P Fo;
Y, ___f..-ac.-L,' + 70i(1 4+ ms)Wyas, L; + riiLi + 15i Lo (Wai ~ Wy,)
* T T W, Wi +U3 Wa - Wy (Wa — Wy)? + (Uai — Uy)?
Y. = UriPoi-1 _ p1:l1i(451 — 8) (v — 1) (Pd_l).-,,x
‘T |P_ -PF — Poi
8 [r..-(l + ms)¢UsiLias; + 1:(Ua — Uri) Li(¢ - 1) ]
Wi+ Uz (Wa = Wy)3 + (Usi — Uy)?
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E‘;: APPENDIX B: DEFINITION OF FIRST-ORDER COEFFICIENTS
-y
N
e oo LilCri+B) . CrWuls BiliWau o _ PuiliCri. o _ PuBil
. 1T RT ' 37 "RTRe;, = RTRe;' > RTRs;' ' RTRe,
N P tomrisa(r=1) ( Py )‘v*
IN Gs = + = § — 45y, -—
i R R ehe O
s MoK\ = 2 (e _ 46..M(S:: Moloi
m\ + p— (5— 481 )(Su +1) + Popi,
=1
s _ ~MoPoi-1 _ thomsi(7—1) A fPoic1) 7 _ PulLy
2 6= gl - e (52) 5 ey
S o o
e o —MoPois1 _ Mopiini(v-1) o o . i = PaWiiLs
-\i: G, P-r, w1 Poies (5 — 451541)(S1542 +1); Gao RTRe,
Go = MelCri = Cris1) _ to(Li — Tpi) (i— 1)2+ to(Liss = TPis1) (8341 =1 2
:.:-" s CriCris 17.040r? 7N 17.040'?_“ B2+l
-
PyCriL; Cr;L; B;L;
._'\ -0 [ S = L] . = ) . — .
\
- (Wi = Wi )Poi | ho(Wii = Wag)(v-1) . _ _ il
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DEFINITION OF MATRIX ELEMENTS
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A= Agg = A1y = Ag1=-m,
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L~

The remaining elements are sero.

A; MATRIX

.
3 Ajg=—A32=Gw+G;
Ass = ~Ag=Cw+G;
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o Aga=As)=Ar4=Ags =X,
W
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A;41 MATRIX
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The remaining elements are sero.
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APPENDIX D: THE THEORY OF JENNY ET AL. [1]

The theory of Jenny et al. [7] has shown consistently good agreement with measured test results [25] in
predictions of cross-coupled stifiness and direct damping. The author had hoped to program their solution
and make direct comparison to the present theory; however, as outlined below, unresolvable difficulties arose
in deriving the published equations of [7].

v
N

v

- The theory of Jenny et al. [7] was derived for the "box-in-a-box” control volume configuration illustrated
in figure 5. Thus, a direct comparison of their equations with those presented in this report is not feasible.

m However, a review of the development of their governing equations is of interest.

= The following convention will be used for the control volumes in figure 5: the large control volume is control
volume I and the small control volume is control volume II. The continuity equations for the control volumes

- shown in figure § are:

w Continuity I:

OpW3Az 3pW 1A, 3p(A + A3) . Lo

K Reod ' Redd T gt ‘tmwi—m=0 V1)
Continuity II:

N

N w. .

N, 3pW34; + dpAs s = 0 J2)

Rs38 at

The following assumptions are used by Jenny et al. [7] to simplify equations (J1) and (J2):
a) the flow is incompressible (p = constant),
b) 'hi-kl = 'hl'i and
c) the area of the control volume II is constant.
‘ The first assumption seems questionable, since this is a compressible flow solution and quite often the flow
- in a labyrinth seal achieves Mach 1 at the exit. Assumption (b) is a valid assumption for the seroth-order,
steady flow solution, but it is questionable for the first-order, unsteady flow solution for an orbiting rotor.
Using the chain rule for the expansion of partial derivatives and the above assumptions, equations (J1) and

(J2) become:
Continuity I:
° aW: an aCT 3(441 + AQ) _
' Az EY) +A1 36 +W1L 30 +R3 at —‘O (J3)
- Continusty II:
W,
pAga—-l — Rsmny =0 (J4)
a6
- The equations given by Jenny et al. [7] are:
Continusty I:
- aWQ an GCr 6(.41 + AQ) _ e
A’?ﬂ_-{”‘l T, -W,L 36 Rs 3t =0 (J5)
Continuity II:
aw, .
PA:W -my =0 (Je)

The difference between equations (J3) and (J5) is in the sign of the third and fourth terms. The second and

third terms in equations (J3) and (J5) originate from the same partial derivative, but have opposite signs.

The author could not arrive at the same conclusion using the chain rule. The difference between equations
(J4) 2nd (J6) is the radius, Rs, in the second term. This may or may not be a problem since the radial mass
flow term, m,., is not defined by Jenny et al. [7].
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The author agreed with the derivation of the momentum equations for the control volumes shown in figure
§ except for the aforementioned assumptions and the following discrepancies:

(a) the axial velocity component is incorporated in the definition of the stator wall shear stress, but
neglected in the definition of the Reynold’s number which is used to calculate the friction factor term in the
shear stress relation.

(b) the perturbation of the friction factor is ignored. This term has been shown [24] to be important in
the solution for rotordynamic coeflicients.

(c) the leakage equation is a global leakage equation. This means that local perturbations pertaining to
a cavity can not be found from this equation. Jenny et al. [7] perturb this global equation for clearance.

(d) the carryover coefficient definition used in the leakage equation is a global equation and cannot be
perturbed.

(e) the flow coefficient used in the leakage equation was obtained from a plot of empirical data. No
explanation was given for the method used to obtain the dervatives of the flow coefficient used in the
perturbation equations. T

The aforementioned problems prevented the anthor from obtaining a solution based on the theory of Jenny
et al. [7]. Regrettably, no direct comparison between it and the theory presented in this paper was possible.

.
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THEORY VERSUS EXPERIMENT FOR THE
ROTORDYNAMIC COEFFICIENTS OF LABYRINTH GAS SEALS:
PART II - A COMPARISON TO EXPERIMENT!

DARA W. CHILDS
JOSEPH K. SCHARRER
MECHANICAL ENGINEERING DEPARTMENT
TEXAS A&M UNIVERSITY
COLLEGE STATION, TX 77843

SUMMARY

An experimental test facility is used to measure the leakage and rotordynamic coefficients of teeth-on-
rotor and teeth-on-statar labyrinth gas seals. The test results are presented along with the theoretically
predicted values for the two seal configurations at three different radial clearances and shaft speeds to 16,000
cpm. The test results show that the theory accurately predicts the cross-coupled stiffness for both seal
configurations and shows improvement in the prediction of the direct damping for the teeth-on-rotor seal
The theory fails to predict a decrease in the direct damping coefficient for an increase in the radial clearance
for the teeth-on-stator seal

INTRODUCTION

Part 1 of this paper presented a new two-control-volume analysis to predict the rotordynamic coefficients for
labyrinth gas seals. This part (Part 2) of the paper provides a comparison of the predictions of the analysis
from Part 1 to the new test results for six “see-through” .labyrinth gas seals, as shown in figure 1, three with
teeth on the rotor and three with teeth on the stator. The design, development, and operation of the test
apparatus and facility, which have been developed to measure the leakage and rotordynamic coefficients of
annular gas seals, has been described by Childs et al. [1]. The apparatus described in [1] was limited to
a top shaft speed of 8,000 cpm. The apparatus has since been redesigned to operate at shaft speeds up to
16,000 cpm. A complete discussion of the redesign of the apparatus can be found in Elrod and Childs (2].

As described in (1], the rotordynamic coefficients for a gas seal are defined by the following linearised force-

displacement model.

FX Kcs Kys X + Ccs Cys x. : (1)
Where (X,Y) define the motion of the seal’s rotor relative to its stator, (Fy, F,) are the components of the
reaction force acting on the rotor, and (K., Kyy, Kay, Kys) and (Cee, Cyys Cays Cys) are the stiffness and

damping coefficients respectively. Equation (1) applies for small motion of the rotor about an arbitrary
eccentric position. For small motion about a centered position, the following simpler mode) applies.

(B[4 &[S c]{f} (2)

Although the test apparatus has the capability of separately identifying the eccentric-position rotordynamic
coefficients of equation (1), the results presented here are for the centered-position case only.

PREVIOUS EXPERIMENTAL PROGRAMS

A limited amount of experimental data has been published to date on the determination of stiffiness and
damping coeflicients for labyrinth gas seals. The first published results for stiffiness coefficients were thoee
of Wachter and Benckert [3,4,5]. They investigated the following three types of seals: a) teeth-on-stator,
b) teeth on the rotor and stator, and c) teeth on the stator and steps or grooves on the rotor. These

! This work was supported in part by NASA Grant NAS3-181 from NASA Lewis Research Center (Technical
Monitor, Robert Hendricks) and AFOSR Contract F49620-82-K-0033 (Technical Monitor, Tony Amos)
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results were limited in that the pressure drop was small, much of the data were for nonrotating seals, no
data were presented for seals with teeth on the rotor, the rotor speed was limited, and tests where rotation
and inlet tangential velocity existed simultaneously were very scarce. The next investigation was carried
out by Wright [6], who measured an "equivalent” radial and tangential stiffness for single-cavity seals with
teeth on the stator. Although for a very limited and special case, Wright's results do give insight into the
effect of pressure drop, convergence or divergence of the clearance, and forward or backward whirl of a
seal. These results could be reduced to direct and cross-coupled stiffness and damping, hence, they are the
first published damping coefficients for teeth-on-stator labyrinth seals. Brown and Leong [7,8] investigated
the same seal configurations as Wachter and Benckert, in an effort to verify and extend their work. Their
results include variations of pressure, geometry, rotor speed, and inlet tangential velocity. Alhough the
investigation was extensive, the published results are limited because of the lack of information concerning
operating conditions for the various tests. Childs and Scharrer [9] investigated geometrically similar teeth-
on-rotor and teeth-on-stator labyrinth gas seals for stiffness and damping coefficients up to speeds of 8000
cpm. Kanemitsu and Ohsawa [10] investigated multistage teeth-on-stator and interlocking labyrinth seals
up to speeds of 2400 cpm. They measured an effective radial and tangential stiffness while varying the whirl
frequency of the rotor. These data could be reduced to stiffness and damping coefficients. Hisa et al [11]
investigated teeth-on-stator seals with 2-4 teeth and a teeth-on-stator seal with steps on the rotor up to
speeds of 6000 cpm. These data only included static tests for direct and cross—coupled stifiness using steam.

The most extensive comparison of analytical predictions and experimental results was carried out by Scharrer
(12] using the theory of Childs and Scharrer [13] and the results of Childs and Scharrer [9]. This comparison
showed that the theory [13] predicts cross-coupled stiffness reasonably well, but underpredicts direct stiffness,
direct damping and cross-coupled damping.

In reviewing previous experimental programs, there is a clear need for a) more extensive testing of teeth-
on-rotor labyrinth seals and b) experimental results showing the effect of radial clearance change on direct
damping coeflicients. This paper addresses these points in addition to evaluating the new analysis presented
in Part 1 of this paper by comparison to the new test results.

TEST APPARATUS AND FACILITY

Introduction

The test results reported here were developed as a part of an extended, joint NASA-USAF funded research
program for annular gas seal studies. Tests were carried out on six “see-through® labyrinth seals, three
with teeth on the rotor and three with teeth on the stator, each with different radial clearances. The test
program bad the objective of examining the effects of a change in radial clearance on the leakage and stability
performances of a teeth-on-stator and a teeth-on-rotor labyrinth seal. Air is the test fluid.

Test Apparatus

The rotor shaft is suspended pendulum-fashion from an upper, rigidly mounted pivot shaft, as shown in figure
2. This arrangement allows a side-to-side (horisontal) motion of the rotor. A cam within the pivot shaft
allows vertical positioning of the rotor. The rotor is both positioned and excited horisontally by s hydraulic
shaker head which acts on the rotor-shaft bearing housing and works against a return spring mounted on the
opposite side of the bearing housing. The design of the test rig permits the installation of various rotor/stator
combinations. The stator is supparted in the test section housing by three pieso- electric quarts load cells
in a trihedral configuration. The test apparatus measures the reaction-force components and relative seal
stator motion. The harmonic components of the motion and force signals are used to identify the stiffness
and damping coefficients. Different seal stator designs are obtained by the use of inserts.

The dimensions and pertinent data for each seal configuration are given in table 1. For the remainder of
this paper, the seals will be referred to as seal 1, seal 2 and seal 3, as given in table 1, in addition to their
respective configuration. The smooth and labyrinth inserts used for the 0.4mm (0.016in.) clearance seals
are shown in figure 3. The labyrinth tooth detail for both rotor and stator is shown in figure 4.
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Table 1. Dimensions of seals tested in this study

Teeth-on-rotor Teeth-on-stator
Seal } -
Radius, mm 72.8 75.6
Length, mm 50.8 50.8
Clearance, mm 0.3 0.38
Number of teeth 16 16
Seal 2
Radius, mm 72.5 75.6
Length, mm 50.8 50.8
Clearance, mm 0.4 0.4
Number of teeth 16 16
Seal 3
Radius, mm 72.5 75.6
Length, mm 50.8 50.8
Clearance, mm 0.58 0.5
Number of teeth 16 16

Test Variables

When shaking about the centered position, the Dynamic-Seal- Apparatus is capable of controlling the fol-
lowing three independent variables:pressure ratio, rotor speed and sinlet circumferential velocity. Two shake
frequencies, 56.8 Hs and 74.6 Hs, were used during testing with essentially the same results. The results to
be presented were obtained by shaking at 74.6 Hs at an amplitude between 0.076 mm and 0.1 mm. The
actual test points for each of these three independent variables are shown in table 2. When reviewing the
following figures, table 2 should be consulted for the definitions of all symbols used.

Table 2. Definition of symbols used in figures

Supply pressure Rotor speeds Inlet circumferential velocities
1 3.08 bar 1 3000 cpm 1 High vel. against rotation

2 4.46 bar 2 6000 cpm 2 Low vel. against rotation

38 5.84 bar 3 9500 cpm 3 Zero circumferential vel.

4 7.22 bar 4 13000 cpm 4 Low vel. with rotation

5 8.22 bar 5 16000 cpm 5 High vel. with rotation

The reservoir pressures, as measured upstream of the flowmeter, are given in table 2. These values differ
from the actual inlet pressure because of frictional losses and an acceleration of the fluid due to the inlet
guide vanes. No tests could be run at sero pressure difference, since a small pressure difference is necessary
to keep the rotor from shiftine axially and rubbing the inlet guide vanes. Similarly, no sero rotor speed tests
were run, since rotor rotation was necessary to prevent damage to the thrust bearing during shaking.

The inlet circumferential velocities are given in figures 5,6 and 7 as a function of pressure ratio. The teeth-
on-rotor results are on the left and the teeth-on-stator results are on the right. This convention will be used
for all of the results presented in this paper. The figures show that inlet circumferential velocity remains
fairly constant over the pressure ratios tested. There were five test points for inlet circumferential velocity;
two positive, two megative, and one at sero. The sero inlet circumferential velocity point corresponds
to the x-axis in the figures 5,6 and 7. The negative numbers shown in the figures mean that the inlet
circumferential velocity was opposed to the direction of rotor rotation. The positive numbers mean that the
inlet circumferential velocity was in the same direction as rotor rotation. The two different magnitudes of
inlet circumferential velocity, for each direction, correspond to the different inlet guide vane geometries, as
discussed in [1]. The ratio of inlet circumferential velocity to rotor surface velocity (inlet circumferential
velocity ratio), ranged from about -6 to about 6. Although the larger numbers are practically unrealistic,
they do give insight into the effects of inlet circumferential velocity that would have otherwise gone unnoticed.
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Normalized Parameters

Before the tests described herein were performed, the TAMU gas seal test apparatus was modified as de-
scribed by Elrod and Childs [2] to allow operation at running speeds up to 16,000 cpm. As expected,
subsequent tests revealed & dependence of the rotor diameter on running speed due to inertia and thermal
effects. The rotor growth data, shown in table 3, were obtained from eddy current motion probes positioned
at the midspan of the seal. Thus, as the rotor turns faster, the forces in the seal are aflected not only by the
increased surface speed of the rotor but also by a change in clearance. Theoretically, normalisation would
collapse the data and make the presentation simpler and more straight forward. This was not the case with
the labyrinth seals tested in this study. The failure of the normalisation is detailed by Scharrer {14].

Table 3. Growth of rotor with rotational speed

Rotor speed (cpm) Diametrical growth (mm)
3000 0.01
6000 0.02
9500 0.03
13000 0.05
16000 0.11

Dynamic Results
For a circular orbit of amplitude A, the resultant radial and tangential forces developed by the seal model
of equation (2) are illustrated in figure 8 and are defined by

Ff/A=k—-Cuw

From a stability standpoint, the destabilising tangential force, F;, is of most interest. The destabilising
influence comes from the cross-coupled stifiness, k, and the stabilising influence comes from the direct
damping, C. The radial force usually has little influence on stability, except in rare cases involving multistage
*back-to-back” centrifugal compressors with midspan seals where large negative direct stiffness values may
reduce the natural frequencies. Since the focus of this study was on stability, the croes-coupled stiffness and
direct damping results, which have the most influence, will be presented first. The direct stiffness will follow.

Relative Uncertainty

Before proceeding with the results, a statement must be made concerning the uncertainty present in the
experimental results. Using the method described by Holman [15], the uncertainty in the dynamic coefficients
can be determined. The uncertainty in the force, excitation frequency, and displacement measurements are
0.89 N (0.2 Ib), 0.13 Hs , and 0.0013 mm (0.05 mils), respectively. The resulting calculated uncertainty is 7
N/mm (40 Ib/in) for the stiffness coefficients and 0.0875 N-s/mm (0.5 1b-s/in) for the damping coefficients.
Since the measured cross-coupled damping results were rarely greater than the uncertainty, test results are
not provided here for this parameter.

TEST RESULTS

It might seem obvious, since this paper evaluates the effect on seal performance of varying the radial seal
clearance, that the data should be presented as a function of clearance (clearance being the x-axis). However,
since the inlet circumferential velocity is directly dependent on seal leakage and the seals leakage » different
rates due to differing cross-sectional areas, the inlet circumferential velocity test points for seal 1 differs from
those of seals 2 and 8. This is a problem because the rotordynamic coefficients are very sensitive to the inlet
circumferential velocity. Therefore the dynamic data will be presented as a function of inlet circumferential
velocity ratio at one pressure and one rotor speed. In the following figures, the solid lines represent the test
results and the broken lines represent the analytical predictions.

Cross-coupled Stiffness Comparison

Figure 9 shows a comparison of experimental and theoretical results for cross-coupled stiffness versus inlet
circumferential velocity ratio for the three seal clearances of table 1. The figure shows that the theory does a
good job of predicting the cross-coupled stiffness for both the teeth-on-rotor and teeth-on-stator seals, at low
rotor speeds. The figure also shows that there is no consistent trend in the cross-coupled results for a change
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';: in clearance. Figure 10 shows a comparison of experimental and theoretical results for cross-coupled stiffness
; versus rotor speed for seal 1 (minimum clearance seal) of table 1 at the inlet pressures of table 2. The figure
. shows that the theory correctly predicts a sharp upturn in cross-coupled stiffness at the higher rotor speeds,
i' for the teeth-on-rotor seal. This speed sensitivity was not evident in the low speed results of [9] nor in the
results for seals 2 and 3. The figure also shows that the cross-coupled stiffness for the teeth-on-stator seal

decreases as rotor speed increases. This decrease in cross-coupled stiffness for an increase in rotor speed was
also reported by Hisa et al. [11] for their teeth-on-stator seals. The theory shows the same decrease until the
- higher rotor speeds are reached, then it shows a sharp upturn. This upturn may appear in the experimental
data at higher rotor speeds. The same decrease in cross-coupled stiffness with an increase in rotor speed was
evident in the results for seals 2 and 3.

e~ 3

Direct Damping Comparison

Figure 11 shows a comparison of experimental and theoretical direct damping versus inlet circumferential
velocity ratio at the three clearances of table 1. The figure shows that the direct damping coefficient for a
teeth-on-rotor seal increases as clearance increases. The theory correctly predicts this trend but underpredicts
the magnitude of the coefficient by 30 percent. The figure also shows that the direct damping coefficient
for a teeth-on-stator seal decreases as clearance increases. The theory shows the opposite trend. Figure 12
shows a comparison of experimental and theoretical direct damping versus rotor speed for seal 1 of table
1 at the inlet pressures of table 2. The figure shows that the test results show little or no sensitivity to
rotor speed, for either seal configuration, while the theory shows a sharp upturn at the higher speeds. This

AT,
k]

e |

-::f upturn may be evident in future test results at higher speeds. The results for seals 2 and 8 showed the same
= insensitivity to rotor speed.
. Direct Stiffness Comparison -
:_ﬂ Figure 13 shows a comparison of experimental and theoretical direct stiffness versus inlet circumferential
N velocity for the seal clearances of table 1. The figure shows that, for both seal configurations, the direct
stifiness coefficient is negative and increases as radial seal clearance increases. One would expect sero
w direct stifiness values at sufficiently large clearances. The theory predicts this same trend, for both seal
m" configurations. Figure 13 also shows that the theory underpredicts the direct stiffness magnitudes at high
rotor speeds. Figure 14 show a comparison of experimental and theoretical direct stiffiness versus rotor speed
,q for seal 1 of table 1 at the inlet pressures of table 2. The figure shows that the test results, for both seal
. configurations, show little or no sensitivity to rotor speed. The figure also shows that the theory is overly
A

sensitive to rotor speed. The insensitivity to rotor speed was also evident in the test results for seals 2 and
3.

Stabilsty Analysts

One of the main objectives of this test program was an evaluation of the effect on seal performance of varying
the radial seal clearance. A comparison of the stability of the two seal configurations at the different radial
clearances satisfies that objective. Since a direct comparison of the coefficients of the two seals does not
show any clear stability advantage or the overall effect of a change in the radial seal clearance, another
method of comparison must be used. One method in which the dynamic coeflicients of the two seals can be
. directly compared is through their respective non-dimensional whirl frequency ratios. Whirl frequency ratio
- is defined by

L

A

Whirl frequency ratio = k/Cw = fl,

where w is the running speed, and (3 is the ratio of the destabilising influence of the cross-coupled stiffness
and the stabilising influence of direct damping. From a stability viewpoint, a minimum whirl ratio is
. desirable. Figure 15 shows the whirl frequency ratio versus inlet circumferential velocity ratio for the seal
NG clearances of table 1. For teeth-on-rotor seals, the figure shows that, as the clearance increases, the seal
” becomes more stable. For teeth-on-stator seals the opposite is true; as clearance increases the seal becomes
less stable, for the positive inlet circumferential velocity case. The figure also shows that the teeth-on-stator
seals are more stable that the teeth-on-rotor seals for the positive inlet circumferential velocity ratio, as was
found previously [9)].
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Comparison to theory of [18]

Figures 16 and 17 provide a brief comparison of the present theory to the theory of Childs and Scharrer [183].
Figure 16 shows cross-coupled stiffness versus pressure ratio for a teeth-on-rotor labyrinth seal at 16,000
cpm, and demonstrates that the present theory follows the experimental data more closely than the former
theory [18]. Similarly, figure 17 shows that the present theory also follows the experimental data for direct
damping more closely than the former theory [13].

CONCLUSIONS

Test results have been presented for stiffness and damping coefficients for six “see-through® labyrinth seals,
three with teeth on the rotor and three with teeth on the stator. The seals were tested under identical
operating conditions to investigate the influence of rotor speed and the effect of varying the radial seal
clearance on the rotordynamic coefficients. These experimental results were compared to the predictions
from the new analysis presented in Part 1 of this paper.

The experimental results of the previous section support the following conclusions:

(1) For teeth-on-rotor seals, the direct damping increases as clearance increases; for teeth-on-stator
seals, the direct damping decreases as clearances increases.

(2) Direct stiffness is negative and increases as clearances increases, for both seal configurations. Cross-
coupled stiffiness showed no consistent trend with respect to clearance changes.

(8) Direct stiffness and direct damping show little or no sensitivity to rotor speed up to 16,000 cpm.
Cross-coupled stiffness shows a sharp upewing at higher rotor speeds, for a teeth-on-rotor seal. Cross-coupled
stiffness decreases as rotor speed increases, for a teeth-on-stator seal

(4) As clearance decreases, teeth-on-rotor seals become less stable and teeth-on-stator seals become
more stable, for positive inlet circumferential velocity.

The theoretical results of the previous section support the following conclusions:

(1) The theory correctly predicts that direct stiffness is negative and increases as clearance increases, for
both seal configurations. The theory incorrectly predicts an approximately quadratic increase in the direct
stiffness magnitude (becoming more negative) as speed increases. Test results show scant sensitivity.

(2} The theory accurately predicts an increase in cross-coupled stiffness at high speeds, for a teeth-on-
rotor seal

(3) For teeth-on-rotor seals, the theory correctly predicts an increase in direct damping for an increase
in clearance. However, the theory incorrectly predicts the same trend for a teeth-on-stator seal.

(4) The theory incorrectly predicts an approximately quadratic increase in direct damping with running
speed. Test results show no systematic change in direct damping with running speed.

. (5) A comparison with test results for a teeth-on-rotor seal shows that the theory presented in Part 1
of this paper does a better job of predicting cross-coupled stiffness and direct damping than does the theory ~
of Childs and Scharrer [13].
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NOMENCLATURE

A Seal orbit radius (L); illustrated in Sgure 8.

B Tooth height (L); illustrated in figure 1.

C,c Direct and cross—caupled damping coefficients (FT/L)
Cr Radial clearance (L); illustrated in figure 1.

K,k Direct and cross-coupled stiffness coefficients (F/L)
F Seal reaction-force (F)

L Tooth pitch (L); illustrated in figure 1.

Pr Seal inlet pressure (F/L?)

Rs Seal radius (L); illustrated in figure 1.

X,Y Rotor to stator relative displacement components (L)
1, Whirl frequency ratio

w Shaft angular velocity (1/T)

Subscripts

i Value in i-th cavity

r Radial component

t Tangential component

xy Rectangular coordinate directions
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CROSS-COUPLED STIFFNESS (N/MM)

BIRECT DAMPING (N-S/M)

TECTH-ON-ROTOR LABYRINTH St Al
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450 | O EXPERIMENTAL DATA
O NE¥ PHOGRAM RESULTS
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350

0 1.6 3.2 4.8 6.4 )
.8 2.4 4 5.6 7.2

PRESSURE RATIO

Fig. 16 A comparison of experimental and theoretical
results of this report with those of [13)
for cross-coupled stiffness.
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Fig. 17 A comparison of experimental and theoretical
results of this report with those of [13)
for direct damping.
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ABSTRACT .

A numerical method employing a finite difference approach for calculating
the rotordynamic force on eccentric,whirling, labyrinth seals has been developed.
The SIMPLER algorithm along with QUICK differencing is used to calculate the
flowfield within a seal. A modified bipolar coordinate system accurately describes
the geometry of an eccentric seal. The high Reynolds number k£ — ¢ turbulence
model is utilized, which can handle subsonic compressible or incompressible flows.
A three-percent eccentric single labyrinth cavity rotating at 5,000 c.p.m. was
investigated with three different inlet swirl conditions, each with and without a
whirl orbit frequency of 2500 c.p.m. The fluid was air with an inlet axial velocity
near Mach 0.2. Detailed force, pressure and shear stress distributions within the
cavity are presented. The results indicate that the pressure component accounts
for 99 percent of the rotordynamic force. Whirl seems to have little effect on the
force, and the downstream tooth of the cavity makes a very significant contribution

to this quantity.
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CANT Ny

NOMENCLATURE

a radius of tooth periphery

b stator radius

c clearance

C convection coeflicient

Cq turbulence constant

Ce, turbulence constant

C, turbulence constant

D diffusion coefficient

dz(7) displacement along general orthogonal coordinate lines
F rotordynamic force

h scale factor

H,(;) coordinate variation term

k turbulence kinetic energy

l turbulence length scale

L seal cavity pitch

P pressure

P, reference pressure

p* pressure re-defined by Eq. 23

T polar coordinate

s distance

U r! velocity component

U, velocity expressed in cartesian tensor notation

U(1) velocity expressed in general orthogonal coordinate system
v r? velocity component
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oy w _z° velocity component
R z, general coordinate expressed in cartesian tensor notation
o
Do . .
:':? z! general orthogonal coordinate
e
# ‘.’_‘.
b ‘ z transformation variable
)
o, A flux coeflicient
s g.:
195 Co specific heat
B . . .
\ e eccentric distance ratio
o H stagnation enthalpy
-
\ .,.' - 3 .
e P production of turbulent kinetic energy
Ve
AHAN
S Pr Prandtl number
o
> Sp source term
N
- Su source term
weL
- ,-
s T temperature
' A% total velocity
el v reference velocity
’ a constant :
N 8 bipolar coordinate parameter
Yy .
' :-::.4 v bipolar coordinate parameter
l-\‘
L] . . .
o r diffusion coeflicient
| J
- b, Kronecker delta
‘ :El:f" € turbulence energy dissipation
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e £ eccentricity ratio
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‘e 0 polar coordinate "
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L H viscosity
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g P .bipola.r coordinate, density
- o constant in transport equations
:N: T stress
m T* anisotropic stress
¢ bipolar coordinate
;'_5 Y general transport quantity
" w rotational frequency
fn 9] whirling frequency
. Suberipts
A eff effective (laminar plus turbulent)
- 1 index
n inlet
- ] index
. l index
& lam laminar
- out exit
I r radial
:E-j'. t tangential
. B bottom face of cell
. E east face of cell
o N north face of cell
e P p-cell node
. S south face of cell
T top face of cell
;::: w west face of cell
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INTRODUCTION

Labyrinth seals are usually used in pumps, compressors, and turbines to limit
internal leakage. The labyrinth seal was first applied in a steam turbine near the
turn of the century. The idea was to create a flow path between high and low
pressure zones that would convert pressure head into kinetic energy, which was then
dissipated. This was accomplished by a series of cavities. The restriction between
each pair of cavities in the flow path converts the pressure head into mean flow
kinetic energy, and the expansion in the flow path dissipates the kinetic energy by
viscous losses. Figure 1 shows a bank of generic labyrinth cavities and the resulting
streamlines due to leakage. Although seals are very successful in limiting internal
leakage, they are one of the sources of the self-excited vibration of the turbomachine
rotor.

Self-excited vibration is generally subsynchronous, i.e. the rotor whirls within
it’s housing at a frequency below the rotational frequency. This vibration limits
operating speeds and can be extremely destructive to the turbomachine. Although
the physics of the shaft vibration is understood, a quantitative analysis of the forces
which cause the excitation is not complete. The cause of self vibration is a net force
imbalance on the rotor, and this imbalance occurs when the rotor is displaced from
the geometric center of its housing.

Numerous attempts to analyze the destabilizing forces due to leakage through
labyrinth seals have been made. Analytical, numerical, and experimental investi-
gations have been conducted. Most of the analytical models are complex and use
restrictive assumptions. Fujikawa ‘1] and Jenny [2] used a two—control-volume ana-
lytical approach, and both used empirical data extensively. Iwatsubo (3] considered

time dependent flow area change, but neglected area change in the circumferential

"I RN By ]
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direction. Recently, Childs [4,5,6] improved Iwatsubo’s [3] method and obtained

R

improved results. Kurohashi [7] introduced a variable flow coefficient for annular seals

X

and obtained reasonable results for the cross—coupled force. The fluid mechan-
ics associated with an eccentric labyrinth seal may be too complex to accurately

model using an analytical method. Dietzen and Nordman [8] used a finite difference

3

;‘ﬁf‘-‘f;:é"ﬁ‘?vf-:r

E Z:: method in conjt‘{{tion with a perturbation analysis to determine force coefficients
g N for annular seals. Although the method appears to be promising, the auther did

_a not compute labyrinth seals. Baumgartner [9] used analytical methods to simplify

‘::_:: the equations, which were then solved numerically. Tam and Przekwas [10] used

a ; : a full three-dimensional finite difference analysis and obtained the most detailed
results to date. !
:: 7 Experimental measurements of the rotordynamic coeflicients associated with

- labyrinth seals are quite scarce. Wachter and Benckert [11,12,13] were the first
: to measure stiffness coefficients, but much of the results are for nonrotating seals.
\ Wright [14] measured single cavity seals with teeth on the rotor. Childs [4,5,6]
‘ )\ appears to have obtained the most comprehensive set of measurements. Rotational j
::::-:::'. speed, inlet swirl velocity, and pressure drop across the seals were all varied in

- these measurements. Seals with teeth on the rotor as well as teeth on the stator

were used. Rajakumar [15] measured pressure in the circumferential directior and

:.:__{ measured forces at large eccentricities.

;. COMPUTATIONAL APPROACH L
~.h For the present study it has been assumed that the shaft undergoes a circular ‘
whirl orbit, the center of which coincides with that of the housing. Further, a

single cavity of a multi-cavity seal of teeth-on-rotor design as shown in Figure 1 is

. considered. Note that the periphery of the teeth and the base of the seal cavity are i
% |
R
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concentric. Thus, cylindrical coordinates are well suited to describe the geometry

within the seal cavity. However, in the tooth clearance region outside of the cavity,

bipolar coordinates are used because of the eccentricity of the shaft. Specifically,

it is the modified bipolar coordinates which were choosen because they reduce to

cylindrical coordinates in the limit as eccentricity approaches zero. Figure 2 shows

such a finite difference grid within the gap region.

Wood [16] used modified bipolar coordinates to solve the fluid dynamics

associated with eccentric rotating cylinders in general. Consider two circular

cylinders of radii a and b. Let the centers of the two cylinders be a distance ae

apart. If the eccentricity ¢ and the clearance ¢ are defined as

and

c=(b-e¢)
then modified bipolar coordinates are defined by the transformation

a(€ +7)
147§

-~ —
<~ =

N
i
-
o

where

N = -—26[(1)/(1)2 -1-¢e2+ \/(?/a2 —1-€2)? - 427!

and
b/a+¢—1

8

T 1< (bja)y -

(2)

(3)
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Figure 3 shows the geometry and coordinate system associated with modified
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bipolar coordinates. Curves of constant p are circles in the modified bipolar
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coordinate system. The inner circle is p = 1, and the outer is p = 3. The conformal
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*y

€« %
(]

modified bipolar coordinate system into an equivalent point (r,8) in the cylindrical
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coordinate system.

’

The transport equations to be solved are presented in Cartesian tensor notation.

L4
1

Neglecting body forces, the steady-state continuity and momentum equations are

: %

- 8(pUs) _

-:;:j:' dz; 0 (8)
°.

T O(pU:l;) _ 8p  9Omy (9)
- :j:f Oz; Ox; Oz

‘I where p, U;, and p are the time averaged density, velocity and pressure. The
. Reynolds stresses are determined by the & — ¢ turbulence model. The turbulent
:‘\ energy and energy dissipation transport equations are

e BpUsk) 8 ,pess Ok

- —_ P- 1

J Oz; 6::,( Ok 61‘1) * pe - (10)

:'?.:3 O(pU;e) O pess Oc €

Y ALl . —_— —(CaqP - C, 1
b Oz, 3:ci( Oe B:c;) + k(C ! Cezpe) (11)
.' where the stress is calculated using l
R U, oU; 2 oU,

b Tij ,ueff(a + 50 )+ 3Pkt pess o 5z, % (12)
'..“-" The production of kinetic energy and the effective viscosity are given by

.:ij:f: oU.

T P=—(-7)m (13)
S 0z, "

:::‘ C ok? L
g Heff = “:) - (14)
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The constants C,,, Cey, Ce2, 0k, and o are given values of .09,1.44,1.92,1.0,
and 1.217. This is in accordance with the standard * — ¢ model investigated by
Launder and Spalding (17]. For inlet Mach numbers greater than 0.3, the energy

equation must also be employed. The stagnation enthalpy form

dpUB) &  8H 8 o Vv
9, Bz, Hgg,) = 5, lUms ~Tug () (15)

1s included where

Heff
'y = —= 16
H Pr (16)

Static temperature is calculated using

: (17)

The above equations can be transformed into relations using general orthogonal
coordinates. Pope {18] suggests such a procedure using general tensor notation.
Under this procedure the equations retain their original form and simplicity as much
as possible, and they remain in a form where each term has physical significance.

The divergence operator V(i) and coordinate variation term H,(j) needed to

transform the transport equations into general orthogonal coordinates are

_h 0
(i) = Ihj 8z (i) h, (18)
1 6h,
H,(j) = — — 19
(7) hh, 5z, (19)

Here h; represent scale factors and |h| is the product of the scale factors.

Following Pope’s (18] transformation procedure. the transport equations become

V(i)plU (i) = 0 (20)

T T O O O S T T T T T N T N N S SR N S R P
l\' » x A\'{&fﬂ' y .'."’-.\\J..\" MW R A SR R G T R L A S R R LR L
hd - B 3 i . » o a x ’ =
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6 »
VENpU (U (5) + 7 (i5)] = ~ 6:(’1.) + H,(7)[pU (1)U (2) + 77(3d)] (21)
— H;())[pU()U(5) + 7°(i5))
V(i) pU (i) - ELL Oy ] =8y (22)

oy 0z(1)
The last equation is a general transport equation for any quantity 3. Note that

the isotropic component of stress has been added to the pressure giving

. 2 2 N
PT =+ okt SuessVHUG) (23)

and 7* has the anisotropic stress as

et OUG) | BUG)
(17) #eff[az(j) + 32(0)

- U()H:(5) — U(3)H; (i) + 2U (D) Hi(1);]  (24)

The production of turbulent energy becomes

P = —r (i) _ U()B,0) + VO HWS,)
dz(j) (25)

2
= Zlok + hes VEUEIVOU ()

after the transformation to general orthogonal coordinates. All of the transport

equations can be written as

8 o
V()|pU(1 )y — r,(],a—x%] + V(2)[pU(2)y - Fz(z)az—zz)}
e (26)

+ V(3)[pU(3)v - = S,

rrts)m]

where all I',(,, and S, are defined in Table 1 for the appropriate ¢, and U, V,W
correspond to U(1),U(2),U(3).

The algebraic finite difference equations can be easily derived by applying the

Gauss Divergence theorem to Eq. 26. The integration is performed over the entire
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control volume. Figure 4 depicts a general three-dimensional control volume. The

variable v is stored at nodes P,N,S,E,W,T, and B. Applying the theorem yields

[/ / pU(1)¢ — P—dz(2dz(3] [/ / pU(2

ryg_';_ (l)d,(3)} :+[/2+/‘+pU(3)d)—I"z%%d:c(l)dz(Z)] := (27)

/: /j /t; Sydz(1)dz(2)dz(3)

where the left side contains convection and diffusion and the right-hand side
contains the source term. This form is similar to that for Cartesian coordinates.
Note that dz(1),dz(2), and dz(3) are physical lengths in the general orthogonal
coordinate system. Thus, the appropriate scale factors are required to compute the
integrals. Upon integration the resulting algebraic finite difference equation is of

the form

vp(AN + As + Ag + Aw + AT + Ap) = ANYN + As¥s
(28)
+AgYE + Awv¥w + At + AyB + (Sy)pvol

It is well known that the hybrid differencing scheme produces false diffusion
under certain conditions when large control volume Peclet numbers exist. False
diffusion occurs if the streamlines of the flowfield are oblique to the grid lines and
a nonzero gradient of the dependent variable normal to the flow exists. This false
diffusion is a truncation error in the finite difference formulation. The QUICK
differencing scheme of Leonard {19} generally reduces false diffusion. Rhode et al

20, have previously implemented QUICK into a two-dimensional labyrinth seal

code. Substitution of the corresponding interpolation functions into Fq. 27 , or use
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s ,
o of the hybrid upwind-central differencing scheme, yields N
.a:': : Ad’ + Su N
Pp = 2 Aivi £ Su (29) \
2;Ai—Sp
. where : =E,W N ST ,B,EE,WW NN,SS and the last four neighbors are not needed
{
» . .
s if the hybrid scheme is used.
- by
o A system of staggered grids is used to store the variables of interest as is done in .
v
‘ the TEACH code {21]. The values of pressure, turbulent kinetic energy, turbulence
)
o dissipation, and enthalpy are stored at the intersection points of the primary grid,
e whereas each velocity component is stored on a separate grid.
(e
3 The boundary conditions play an extremely important roie in determining
N the solution to flow in the labyrinth seal. Wall functions based on the log 7
;:-j- law of the wall are used to determine the appropriate shear stress near a wall. _‘
' Axial velocity, circumferential velocity, turbulence kinetic energy, and turbulence '
- dissipation profiles were prescribed at the inlet. All of these inlet profiles were -]
: /
o assumed to be uniform radially. The mnagnitude of these quantities, except for
f circumferential velocity, was determined by executing the program with equivalent
:':-: conditions at the inlet and exit. This case corresponds to a fully developed, i.e. ]
ro streamwise periodic cavity. From this computer run the circumferential variation of -
o o .
° inlet axial velocity, turbulence energy, and energy dissipation, due to eccentricity,
., N
3 were all determined. The inlet circumferential velocity profile was also uniform in a
the radial direction and varied from case to case. At the circumferential location of -
. largest clearance. this quantity was specified according to the problem of interest.
-’ﬂ
o All other circumferential locations were given an inlet value such that the swirl i
e
- velocity conserved mass in the circumferential direction. The radial velocity was
. set to zero at the inlet for all circumferential locations. Pressure was prescribed at
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i" one nodal locz_ition and its value held constant during the numerical procedure. At
.- this lociation pressure had a value of 3 atmospheres. All other pressure nodes were
:::: calculated on a relative basis with respect to this node. The stagnation enthalpy at
m the inlet was calculated using the inlet velocities and temperature.

) Convection is dominant over diffusion at the exit, and the Hybrid up-
QZ: wind/central differencing scheme applied there requires no downstream boundary

values. The axial velocity at the exit was set equal to the axial velocity at the up-
stream node plus a uniformly distributed percentage of the axial velocity increment

required to conserve mass globally.
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RESULTS AN-D DISCUSSION

The first cavity of a multi-cavity seal is considered throughout this work.
Figure 5 depicts the cavity and shows the relevant dimensions. These dimensions
were chosen because they constitute a generic cavity which is somewhat similar
to those used in high performance turbomachines. Further, this geometry can be
modelled with a uniform grid within the cavity. Due to the coordinate system

arrangement the grid must be nonuniform in the gap region. Minimizing the

v s
i)

[
LS s

grid nonuniformity as much as possible was desireable in aiding convergence. The

eccentricity of the rotor was three percent of the clearance c in this analysis.

[

Computational Characteristics

A total of six converged solutions were obtained. In all six cases the rotational
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speed of the rotor was 5,000 cpm. The working fluid was air at 3.0 atm. and

e Yt
{‘

¢

294 K at the inlet. The axial Reynolds number Re = 2U,,c/v in all cases was
19,200, which corresponds to a Mach number near 0.2. The inlet conditions in
all six cases were identical except for swirl velocity. Three different inlet swirl
cases were investigated. These were approximately 30,60, and 90 percent of the
rotational speed of the cavity, which correspond to tangential Reynolds numbers
Reg = 2W,,¢/v of 1,315, 2,631, and 3,946. Each swirl case was considered with no
whirl as well as half-speed forward whirl, i.e. 2,500 cpm.

A grid dependence study revealed that a grid of 22x22x17 nodes in the x-, r-,
and #-directions, respectively was sufficient to simulate the flowfield for this seal
problem. Only the number of grid points in the circumferential direction was varied
in the present grid independence study. In order to conserve computer resources,
the number of grid nodes used in the axial and radial directions, 22x22, was chosen

based on extensive previous grid dependence testing [22] at the same Mach number
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using a concentric-rotor version of the computer program. Grids of 22x22x11,
22x22x17, and 22x22x25 were all used to solve the eccentric cavity whirling at half
speed. All parameters used in the grid dependence study were similar to those used
in the final computations. The 22x22x17 grid was required to determine the grid
independent value for pressure drop across the cavity. The grid-independent results
are presented in Figure 6.

Results

The distribution of the tangential force component within the cavity can be
observed in Figure 7. This plot clearly shows that the downstream tooth contributes
heavily to the total tangential force. Further, the effect of inlet swirl strength on
this force coriponent is only observed at the downstream tooth. This is attributed
to the fact that the circumferential flow is developing within the cavity so that there
is a different pressure distribution at the downstream tooth.

For the cases considered here, the radial force generally decreases slightly with
increasing swirl. Note that this force component is not restoring the rotor to its
original position, but is actually pushing it to larger eccentricities. These same
general trends were measured by Leong (23] at small eccentricities. As with the
tangential force, the flow over the downstream tooth significantly influences the net
radial force as seen in Figure 8. Observe that swirl has little effect on the radial
force distribution and that this force is smallest in the middle of the cavity, as for
the tangential force.

It was determined that the net shear stress contribution to the total net radial
force is less than one percent, as is the case with the net tangential force. As
expected, the shear contribution to the radial force was a minimum when W, = 0.6

because this is near the asymptotic value in which case there was negligible 7.¢ stress
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on the south wall.

As observed earlier, the pressure force virtually determined the net forces acting
on a seal. The variation of pressure (relative to a reference value given below)
in the circumferential direction at three locations along the rotor are plotted in
Figures 9 through 11. The locations are on the upstream tooth, in the middle
of the cavity, and on the downstream tooth. The reference pressures used to
nondimensionalize the pressure in the polar plots, are 306,000 Pz, 210,400 Pz, and
321,800 Pa respectively.

As seen in Figure 9, swirl has little effect on pressure at the upstream tooth.
The distribution of pressure is somewhat symmetrical about the axis through § =180
degrees. This symmetry indicates that the tangential force component is smaller
than the radial component at the upstream tooth.

In Figure 10 the pressure values are taken at the middle of the south wall of the
cavity. Symmetry about the same axis is also observed, and swirl had little effect
on this. At this mid-cavity location the tangential and radial forces were earlier
seen to be at a minimum. Thus this circumferential pressure distribution is the
closest to being perfectly symmetrical about the axis through 8 =180 degrees and
that through 6 =90 degrees.

In Figure 11 the pressure distribution on the downstream tooth is given.
Observe that the pressure distribution is not symmetric at all. This shows the large
pressure forces on the downstream tooth seen earlier in Figures 7 and 8. Higher
inlet swirl values increased this lack of symmetry, which caused an increase in the
tangential force.

Although turbomachines frequently whirl at half-speed, the case of no whirl

has also been studied previously [11.12,13]. The F; distribution along the cavity
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for the no-whirl case was plotted in Figure 12. These results are very similar to
those for half-speed whirl shown in Figure 7. This was expected since for such small
eccentricities the boundary conditions are nearly the same. Figure 13 is the no-
whirl counterpart of Figure 8 for F?. Again, quantitatively as well as qualitatively

the results are very similar to the whirling case.

The Shear Stress

The shear stress distributions along the cavity walls provide previously unavail-
able insight into the basic flowfield. Although they were not found to contribute
significantly to the force components, estimates of these are useful in the develop-
ment of simpler models. Shear stresses are plotted along the wall and in the free
shear layer for a specific theta value. The circumferential variation for a specific
wall location is also given. Thus Figures 14 through 18 can be used to construct
the entire three-dimensional shear stress distribution along the cavity walls and the
free shear layer. Figure 14 shows the points labeled E,F,G, and H which are used
to denote a specific location in the cavity. For example, wall FG is the south wall
of the cavity, and EH is the free shear layer.

The variation of shear stress along the rotor surface at §=0 degrees for all

three inlet swirl cases at half-speed whirl can be seen in Figure 15. Although the

-‘.\
"
\

fl . - . . . -
7rr component does not vary with inlet swirl, 7,9 varies substantially and is largest

,J_ for the low inlet swirl case. This is because the Ow/0r term in the expression for
Trg 1s largest for low inlet swirl, as the shaft tangential velocity is much higher than
that of the fluid. For the case of high inlet swirl, 7,¢ is almost uniform. Note that

. the stresses are smallest in the corners of the cavity where the turbulence energy

f.

- and thus the turbulent viscosity is small.

-~ In Figure 16 the free shear layer stresses are shown. Again, 7., does not vary
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with inlet swirl, and stress 7,4 is fairly uniform for the high swirl case. The 7,4

i stress is highest near the upstream tooth, as this is again a region of very large
o oW /or.

The shear stresses along the west wall of the cavity at 8=0 degrees can be seen

o in Figure 17. Stress 7., does not vary with inlet swirl, and 7.4 is largest for the

> low inlet swirl case as expected. Stress 7.9 is rather uniform for high swirl, and

the maximum value of 7,9 occurs near the shear layer. The shear stresses along

the east wall of the cavity at §=0 degrees are presented in Figure 18. The basic

. characteristics are generally similar to those in Figure 17. That is 7., does not vary

° with inlet swirl, and 7,4 is largest for low inlet swirl. The maximum of stress 7.4 is

: near the shear layer due to the high turbulence level there.
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CONCLUSIONS
A computer program has been developed for the prediction of rotordynamic

forces on an eccentric whirling cavity. Eccentricity, shaft speed, whirl rate, and

various inlet conditions can be specified by the user. This work demonstrated that

1 “ numerical methods can be used to determine rotordynamic forces on labryinth seals,
E o as well as the bulk flow analytic models used in the past. The solution obtained from
E o the computer code appeared to be reasonable and contained the expected flowfield
) . features. Comparison of forces with Leong [22] showed qualitative agreement.

Unfortunately, force measurements for a single teeth-on-rotor labyrinth cavity are

t - not available for quantitative comparison. However, multi—cavity predictions for

comparison with measurements are forthcoming.

- For the present case of one generic cavity at three percent eccentricity, rotating
o= at 5,000 r.p.m., whirling at 2,500 r.p.m., and with an inlet axial velocity near Mach
[
0.2. the following can be asserted:
o~
pd 1. An increase in inlet swirl velocity increased the tangential force. The
) direction of the force would accelerate the whirl.
' 2. The largest contribution by far to the total tangential force was from the
- pressure imbalance on the periphery of the downstream tooth. It is expected
" that the tangential force can be affected by altering the geometry of the cavity
- at the downstream tooth. Specifically, the thickness and/or geometry of the tooth
g periphery is apparently a very important consideration when one is designing a bank
p
{ of labyrinth seal cavities in high performance turbomachinery where rotordynamic
- instabilities are a problem.
b -
o 3. The radial force was not restoring the shaft, but was pushing the shaft to
d
S larger eccentricities.
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4. The shea.r stress made little, nearly one percent, contribution to tbe total ] 1:
tangential and radial force.
5. Whirl had a very small effect on the forces.
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Table I Diffusion Coefficients and Source Terms in the Transport Equations

N 5
1 0 0
r 1 V(z)(“af(‘; )+V(3)(“ o ) (/‘az(x)) - a—i%
v 1 v(2) [pa L+ 2un'H2(3)] + V(B)[u(a—‘z% ~VH,(3) - WHJ(:z))]
’Pa z)] a:(z) + H3(2)[p”/'2 - 2“(32‘(‘3) 'H3(2))]
_HZ(B)[/J‘ W= (2 + 2 - VH(3) - WH;(2))]
1% 1 v(2)[u( 545 — VHa(3) - WHs (2 )]
V(@) [n s + 2V Hy(2)] + V) s ] -
+Hy(3) [V - 2 (52 + WHa(3 )]
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ABSTRACT

A finite difference method for determining rotordynamic forces on an eccentric
whirling labyrinth cavity has been developed. A coordinate transformation was
applied to the turbulent flow Navier-Stokes equations in order to use the modified
bipolar coordinate system. The SIMPLER algorithm with QUICK differencing and
the high Reynolds number k-¢ turbulence model are used to compute the complex
turbulent flowfield. A circular whirl orbit about the geometric center of the housing
was specified for simplicity. For the cases considered, the radial and tangential
force components increased and decreased, respectively, with increasing inlet swirl.
Also, circumferential pressure variations are included for enhanced insight into the
flowfield. Further, the circumferential variation of both shear stress components

along each surface of the cavity are presented to allow the developers of various

bulk flow models to refine their stress modelling.
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i NOMENCELATURE
’ a radius of tooth periphery
E§‘: dz(1) displacement along general orthogonal coordinate lines
. F rotordynamic force
ﬂ h scale factor
:: H;(j) coordinate variation term
- k turbulence kinetic energy
? L seal cavity pitch
- P pressure
:::: p* pressure re-defined by Eq. 9
N r polar coordinate
v s distance
- U r! velocity component
~ U; velocity expressed in cartesian tensor notation
o

r

v
——
~.
g

velocity expressed in general orthogonal coordinate system

a |4 z? velocity component
W z?® velocity component

T, general coordinate expressed in cartesian tensor notation

- Tt general orthogonal coordinate

oy A flux coefficient

- Sp source term

Su source term

: T diffusion coefficient

| &5 Kronecker delta

:.' € turbulence energy dissipation
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6 . polar coordinate

m viscosity |
P density

T stress

T° anisotropic stress

Y general transport quantity

w rotational frequency

Subscripts

eff effective (laminar plus turbulent)
1 index

in inlet

7 index

l index

out out

r radial

sh shaft

t tangential

B bottom face of cell

E east face of cell

N north face of cell

P p—-cell node .
S south face of cell

T top face of cell

W west face of cell

Superscript

CmmCy
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INTRODUCTION

Self-excited vibration remains a serious problem encountered in high perfor-
mance turbomachines. A complete quantitative analysis of the excitation forces
causing such vibration is still not complete. The excitation forces result from the
displacement of the rotor from its geometric center in the housing. This displace-
ment often results from a small mass imbalance on the rotor. The result of the
self-excited forces is usually subsynchronous whirl. Subsynchronous whirl (whirling
at a frequency below the rotational frequency of the shaft) may occur in the same
direction as the shaft rotation or in the opposite direction. One source of these
self-excited forces is labyrinth seals.

Labyrinth seals are used to limit internal leakage from high to adjacent low
pressure regions in a turbomachine. They consist of a highly frictional flow path
between the rotor and stator. The flow path converts pressure head into mean flow
kinetic energy, which is dissipated by viscous losses. Figure 1 shows the streamlines
within a short bank of labyrinth cavities.

A number of analytical investigations on the destablizing forces generated by
the leakage flow through labyrinth seals have been performed. Many of the analyti-
cal methods employ bulk flow models and use numerous empirical correlations. The
problem was first modelled by Alford [1], who neglected circumferential flow, result-
ing in no predicted force. The calculations of Kostyuk [2] neglected the change of
chamber area due to rotor eccentricity and contradicted various force measurements.
Iwatsubo [3,4] extended Kostyuk’s model to include this chamber area variation.
Childs and Scharrer [5] included this variation and developed improved shear stress
relationships. They obtained generally improved predictions. These investigators

also presented [6] the first complete set of separate experimental values for the
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stiffness and damping coefficients.

Only very recently has Computational Fluid Dynamics CFD been utilized
to predict the forces on labyrinth seals. Dietzen and Nordman [7] used it in a
hybrid perturbation/CFD model to solve the Navier-Stokes equations for turbulent
flow. Wyssman [8] was apparently the first to present pressure distributions for
an eccentric-rotor labyrinth cavity from a three-dimensional computation of the
turbulent Navier-Stokes equations. These along with velocity distributions given
by Wyssman, et al [9] were used to develop a special two—control-volume bulk-flow
model. Tam, et al [10] used a three—-dimensional CFD code to compute the forces
in non-labyrinth, i.e. annular seals.
NUMERICAL MODEL

In this study the whirl orbit has been idealized as circular motion, the center
of which coincides with that of the housing. A single cavity of a multi-cavity seal
of teeth—on-rotor design is analyzed. Since the tooth perimeter is concentric with
the base of the seal cavity, cylindrical coordinates are the natural choice within
the seal cavity. However, in the clearance region between the teeth and the stator,
bipolar coordinates are used because of the eccentricity of the shaft. Specifically,
the modified bipolar coordinate system was selected as it becomes the cylindrical
coordinate system in the limit as eccentricity approaches zero. Figure 2 shows
such a finite difference grid within the clearance region. Reference {11] gives details
concerning the modified bipolar coordinate system.

Neglecting body forces, the steady-state continuity and momentum equations

are

o(pl) _

0 (1)

or,

el Bl o
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where p, U;, and p are the time-averaged density, velocity and pressure. The
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Reynolds stresses are determined by the high Reynolds number k — ¢ turbulence
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*‘f»j: The equations were transformed into relations involving general orthogonal
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coordinates, using Pope’s [12] method. With his transformation procedure the
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equations retain their original form and simplicity as much as possible.
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Counsider a general orthogonal coordinate system where the orthogonal coordi-
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nates are denoted by z'. Distances in this system can be related to the Cartesian
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where the scale factors h; are excluded from the summation convention. Thus,
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the physical displacements along a coordinate line z' in the general orthogonal

O;

coordinate system are dz(i). The scale factors are determined by ]
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where Z; are the coordinates in the Cartesian coordinate system. Pope’s diver-
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gence operator V(i) and coordinate variation term H;(j) needed to transform the

transport equations into general orthogonal coordinates are
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i Here h; represent scale factors and |h| is the product of the scale factors. After
. performing the transformation, the mass and momentum equations become
2 o
V(@) eUG) =0 (7)
'.q and s
p* : Nprys ..
> (DPUU(G) +77(25)) = — + Hi(7)[pU()U(2) + 7*(22
. “aegy) HEOLUOUG FrG
' — H;())[pU)U(5) + 7°(25)]
. The isotropic component of stress has been added to the pressure giving
. 2 2 Ny
PP =P+ gpk+ SpessV(HU() (9)

where 7° has the anisotropic stress as

Ui oUu (5
T°(i5) = ﬂe!f[az( ; + az((z))

UGi)H.(7) - U(5)H;(3) + 2U()H:(1)6;5)  (10)

h All of the transport equations can be written as
oy 0
PN = Ty 53] + VNP2 ~ Loy 0s]
11
o (1)

V(3)[pU(3)s - F:(a)a—z(s—)] = Sy

where all T',(;) and Sy are defined in reference (11] for the appropriate- ¥, and

T U,V,W correspond to U(1),U(2),U(3).
1\.

The algebraic finite difference equations can be easily derived by applying the
o Gauss Divergence theorem to Eq. 11. Further details are available in reference [11].

Figure 2 shows the modified bipolar coordinate portion of the grid. Observe that
dz(1),dz(2), and dz(3) are physical lengths in the general orthogonal coordinate
system. Upon integration the resulting algebraic finite difference equation is of the
form

yp(An + As + Ap + Aw + At + Ap) = ANYN + Asts

(12)
+ApvEe + Awyw + At¢r + ApYB + (Sy)prol
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The hybrid upwind/central differencing scheme yields false diffusion under ‘
certain conditions when large control volume Peclet numbers occur. False diffusion
error arises if the streamlines are oblique to the grid lines and a nonzero gradient of
the dependent variable normal to the flow exists. The QUICK differencing scheme

of Leonard [13] generally reduces false diffusion. Rhode et al [14] have previously

implemented QUICK into an axisymmetric computer code from which this program
was developed. The three-point interpolation expression for the west face of the

control volume on a uniform grid is shown in Figure 3 and is calculated by

1
Yo = 5 (¥ +¥w) — £(¥5 — 24p + Yw) (13)
if Uw is negative and i
Yo = 3(Up + W) = £(¥p — 2w + Yww) (14 i

if Uw 1is positive. T+ interpolation functions were modified for any non-uniform 1
grid. Substitution of these interpolation functions into Eq. 12, or use of the hybrid

differencing scheme yields

,'Ai"/’i + Su :
—_——ZEA- 5 (15) !

where : =E,W,N.S, T,.B,EE,WW ,NN,SS and the last four neighbors are not needed

Yp =

s

in th > hybrid scheme.

As is done in the TEACH code [15], the variables were stored on a system of
four staggered grids. The values of pressure, turbulent kinetic energy, turbulence
dissipation, and enthalpy were stored at the intersection points of the primary grid,
whereas each velocity component was stored on a separate grid.

Wall functions were used to determine the appropriate shear stress near

a wall. A radially unifrom profile of axial velocity. circumferential velocity,

]
i
i
1
]
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A turbulence kinetic energy, and turbulence dissipation was prescribed at the inlet.

| The circumferential variation of each was determined from a preliminary computer

run. For that run, the inlet value of each variable, except pressure and swirl velocity,

L

was set equal to the corresponding outlet value from the previous iteration. This

case corresponds to a fully developed, i.e. streamwise periodic cavity. The inlet
" circumferential velocity profile was also uniform in the radial direction. At the

circumferential location of largest clearance, this quantity was specified according

-}‘,

to the problem of interest. All other circumferential locations were given an inlet

1
Fl

value such that the swirl velocity conserved mass in the circumferential direction.

>

<A Pressure was prescribed at one point in the domain.
The solution strategy employed is the well documented SIMPLER procedure.
A line solver is used to solve for each variable of interest. This line solver is applied
' in the #—direction in the cylindrical coordinate system and in the ¢—direction in the
]

modified bipolar coordinate system. The re—entrant or cyclic boundary condition

o is utilized. The assembled equations are written in the form
| ~Aryr + (Ap — Sp)¥p — Apt = Su + 3 At (16)

where : =N,S,E,W,NN,SS,EE,WW. Application of Eq. 16 to each grid circle leads
to a matrix that is solved using a CTDMA algorithm. Each grid circle throughout

the domain is solved in this manner.

R e Y S P '.-
F‘.'. ..... '.‘. ‘-\. J'..{‘J‘-

u..h_.;,:m ‘nad.ﬂw.u_mm& ’




12

DISCUSSION
Figure 4 shows the cavity and the relevant dimensions. Minimizing the grid
nonuniformity was desireable in aiding convergence. The eccentricity of the rotor

was three percent of the clearance c in this analysis.

TheFlowfieldsConsidered

Three different inlet swirl cases were investigated: 30,60, and 90 percent of
the rotational speed of the cavity. The rotational speed of the rotor was 5,000
cpm and the working fluid was air at 3.0 atm. and 294 K at the inlet. The axial
Reynolds number Re, = 2U;,c/v in all cases was 19,200, which corresponds to a
Mach number near 0.2. The inlet conditions were identical for each case except for
swirl velocity. Each swirl case was considered with no whirl as well as half-speed
forward whirl at 2,500 cpm.

A grid of 22x22x17 nodes in the x-, r-, and f-directions, was found in a
grid—dependence study to be sufficient to simulate the flowfield for this problem.
A considerably finer grid is required, however, for higher Mach number cases.
In order to conserve computer resources, the number of grid nodes. used in the
axial and radial directions, 22x22, was determined in conjuction with previous grid
dependence testing [16] at the same Mach number.

For the present computer runs, it was found that the radial component of
the net force was much larger than the tangential component. Inasmuch as
the tangential component is a very small value here, it meandered somewhat
(approximately * 8 percent) with further iterations beyond the point of convergence
for other quantities.

Results

The rotor in actual turbomachines has frequently become unstable with the

-

-
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A shaft whirling at a frequency approximately half of the rotational frequency. Results

for this important case of half-speed whirl are considered here. The net tangential
force acting on the eccentric whirling shaft is of considerable interest because it is

the driving force for the whirl phenomenon. In Figure 5 the effect of inlet swirl

la‘

strength on the net tangential force can be seen. The total net tangential force

Y
P

contains contributions from both pressure and shear forces. As expected from the

literature, increasing swirl increases the driving force behind the rotordynamic whirl.

Palrs
P

The contribution of shear forces to the total net tangential force is seen in

v Figure 6. From the quantitative result in Figures 5 and 6 it is obvious that the

o
el

shear component of the net tangential force is less than one percent. The other 99
percent is from the net pressure force due to the circumferential pressure distribution
around the cavity. Observe that the south wall(cavity base) contribution is less than

zero and the others are greater than zero. This gives a cancellation and a small

total shear force. Also, note that the south wall shear was the only one significantly

-,
-y Y

¥y

influenced by a change in inlet swirl.

While a positive tangential force is a whirl driving force, a negative radial force

L hg

is a restoring force. The effect of inlet swirl on the total net radial force can be seen

:;: in Figure 7. The radial force generally decreases slightly with increasing swirl. It is
about four times larger than the tangential force. Note that the force is not restoring
< the rotor to its original position, but is actually pushing it to larger eccentricities.
it These same general trends were measured by Leong [17] at small eccentricities.
) It was determined from Figures 7 and 8 that the net shear stress contribution
to the total net radial force is less than one percent, as is the case with the net
. tangential force. Figure 8 also shows that all radial shear force components were
invariant with swirl, except at the south wall. As expected, the shear contribution
|
|
!
|
-
|
R A R A A R S A ]
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to the radial force there was a minimum when W = 0.6 because this is near the

asymptotic value in which case there was negligible 7,9 stress on the south wall.
Since the pressure force virtually determines the net forces acting on a seal, the

variation of pressure (relative to a reference of 306,000 Pa) in the circumferential

direction at two locations along the rotor are plotted. In Figure 9 the pressure
values are taken at the middle of the south wall of the cavity. Symmetry about
the axis through #=180 degrees is observed indicating a very small contribution
to F,, and swirl had little effect on this. In Figure 10 the pressure distribution
on the downstream tooth is given. Observe that here the pressure distribution is
not symmetric at all through this axis, contributing substantially to F;. Higher
inlet swirl values produced this lack of symmetry, which caused an increase in the
-. tangential force.

The case of no whirl has also been studied previously. The current results for

the non-whirling case are very similar to those shown for half-speed whirl. This
was expected since for such small eccentricities the boundary conditions are nearly

the same.

The development of circumferential velocity within a bank of labyrinth cavities

has been of interest for some time because, as shown above, swirl has a substantial J
. influence on the forces generated by an eccentric seal. The circumferential variation

of swirl at the inlet and exit for the case of lowest inlet swirl is given in Figure 11. ‘j
, The swirl increased in this case from the inlet to exit by about seven percent. This
': was expected since the inlet swirl was below the fully developed (i.e. asymptotic)
: value. Notice that the peak of the distribution shifted circumferentially nearly 25

degrees. This is attributed to the eccentricity and swirl development. For the

® intermediate inlet swirl case of W* = 0.6, the swirl velocity increased by four
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percent. Since; this value of inlet swirl 1s closer to the asymptotic limit, there was
less of an increase. The peak value shifted only about 12 degrees, in this instance.
For the largest inlet swirl case, the swirl changed little in magnitude and shifted
about 12 degrees.

The development of axial velocity through the cavity was also examined. This
development for all three inlet swirl cases is presented in Figure 12. In each case
the axial velocity inlet profile was exactly identical, and all three cases produced
the same exit axial velocity. The exit axial velocity was almost symmetric about
an axis through 6 =180 degrees. For the present inlet Mach number, the velocity
increased by about two percent from inlet to exit.

The velocity, pressure, turbulence energy and turbulence dissipation distribu-
tions give additional insight into the flowfield within the cavity which is useful to
the developers of of simpler models. Reference [18] contains profile plots of these
quantities. These plots are for the intermediate inlet swirl case with half-speed
whirl. The velocity distributions within the cavity were quite similar to those pro-
duced by Rhode and Sobolik [14] for a concentric-rotor seal. The velocity did not
vary greatly circumferentially. This can be expected since the eccentricity was only
three percent. The axial velocity component shows significantly more circumferen-
tial variation than the other two velocity components.

Although they do not contribute significantly to the force components, shear
stress distributions are needed in the development of simpler models. Shear stresses
are plotted along each wall as well as the free shear layer for =0 in Reference
[11]. The corresponding circumferential variation of these quantities at a location
midpoint along each surface is given here. Thus the two sets of figures together can

be used to approximate the entire three—dimensional shear stress distribution along
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the cavity walls and the free shear layer.

The circumferential variation of the above shear stresses for a location midway
along each respective plane is shown in Figures 13 through 16. The stresses in
Figure 13 are for the midpoint along the south wall of the cavity. Stress 7., is
independent of inlet swirl and exhibits a minimum at =180 degrees due to the
lower axial velocity at that #-location (most of the leakage flow is near §=0). Stress
T was fairly invariant with 6, but swirl affected the magnitude of 7,¢ as found in
the previous figures.

The shear stresses midway along the free shear layer are plotted in Figure

14. As with the corresponding south wall stresses in Figure 13, component 7., is

independent of the inlet swirl and has a minimum at #=180 degrees. Stress 7.9 was

‘}l'

Pt e S |

.

very sinusoidal and decreasing inlet swirl increased the magnitude of the stress, as

J.)' .
"1

L

expected.

5 ¥
P4

The circumferential variation of east and west wall midpoint shear stresses can

S
1’-‘\!

} 0

be observed in Figures 15 and 16. For both walls 7., is again independent of inlet

“x

?
’
ol ey

swirl, and exhibits a minimum at §=180 degrees. Stress 7.4 is nearly uniform with

theta and decreases with increasing inlet swirl.

CONCLUSIONS
‘. It has been shown that rotordynamic forces on an eccentric whirling labyrinth ]
E:.:- seal can be calculated using this numerical approach. A qualitative comparison of |
:J forces with Leong [17] gave good agreement. Although measurements of the rotor-
b-'.M dynamic forces on a single theeth—on-rotor cavity are not available for quantitative
::.(.:E comparisons, numerical simulations of multi-cavity domains in the near future will
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allow this. I

The current computational results serve to provide the seal designer with
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more complet.e information about pressure circumferential variation within a cav-
ity. Specifically, the included results quantify the dependence of the tangential
and radial force components on the level of inlet swirl. For the cases considered
here, an inccease in inlet swirl re-distributed the pressure field to give an increased
tangential force and a decreased radial force. Further, the circumferential pres-
sure distributions presented reveal details concerning the large variation of those
force components with axial location from the mid-cavity location to that of the
downstream tooth.

It was further found that, while there is definitely a net fluid shear force acting
on the rotor, the combined effect of all stresses tend to cancel, giving less than a one
percent contribution to each force component. The circumferential variation of both
wall and "free” shear stresses is presented in order to allow the developers of simpler
flow models to refine their shear stress modeling. The same stress components are
quantified in reference (11} as a function of position along each surface at a fixed
6-location so that an approximate three-dimensional stress field can be constructed

from the two sets of stress data together.
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Fig. 6 Effect of inlet swirl on the shear stress contribution to
the total tangential force on the cavity walls for half-speed whirl
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ABSTRACT

A recently developed version of a swirl-flow finite difference computer program
was improved and employed in predicting the compressible flow of air through
labyrinth seals. The substantial effect of inlet leakage Mach number on grid
sensitivity of the solution is investigated. Further, cavity-by-cavity development of

the flowfield is computed and the distribution of various field variables are presented.
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Results are for straight-through seals of both teeth-on-stator and teeth-on-rotor

s

1

'
L A

types. The teeth-on-rotor seal gives less leakage than the equivalent teeth-on-stator

t

. design. However, it exhibits a greater tendency to generate self excited rotordynamic
po forces due to higher swirl velocities. Also, previously unavailable predictions of
a swirl velocity development are provided for the refinement of simple models for

- rotordynamic forces.
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INTRODUCTION
i Labyrinth seals are most commonly used in rotating machinery such as pumps,
x compressors and turbines. C. A. Parsons (1] apparently was the first to introduce
” the labyrinth seal in his development of the steam turbine near the turn of the
E century. Figure 1 shows a straight-through, teeth-on-rotor labyrinth seal.
The sealing objective is to present a highly frictional flow path between high-
>- and low-pressure regions by means of a series of non-contacting restrictors and
- separating chambers. When the fluid enters a seal, it flows through a small
A constriction at the first tooth and part of the pressure head is converted into mean
& flow kinetic energy. Seals are designed so that a large portion of this kinetic energy
- 1s lost via turbulence dissipation in the chamber immediately downstream. Other
: constrictions and chambers follow downstream, where the process is repeated.
Numerous investigators have proposed empirically based relations utilizing
- characteristics of the overall flowfield for estimating the leakage rate. Experimental
. data such as total press.ure drop has been recorded and used to develop these
relationships. Leakage has been expressed as a function of overall pressure drop,
E . friction factor, seal clearance, tooth thickness, cavity width, shaft speed and number 1
of teeth. Resulting predictions from these formulas are successful when applied to o
':’ seals which are very similar to those which were empirically studied. However,
» any significant difference in seal geometry can give considerable error. Therefore,
- a more widely applicable method has been sought for seals of arbitrary geometry,
'..‘:: shaft speed, pressure drop, etc. °
A numerical algorithm for solving the Navier-Stokes equations is widely appli-
o cable for seals. Furthermore, such a computational tool does not require extensive .
empirical data as a user input. However, this approach and can be quite expensive. -:.'.
5
.. 4
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Stoff’s investigation [2] of incompressible flow in seals was the first attempt at such

‘.
&

a numerical golution. His work involved an extension of the TEACH computer pro-

pram [3], which constitutes the basic approach used in this study also. Some of the

Y

more recent numerical results are those of Rhode and Sobolik [4] and Sobolik [5]

involving subsonic compressible flow. The current study builds upon that work.

,
! 'a
.

The primary objective of the present research is to predict the flowfield
= development from cavity to cavity along a labyrinth seal. Secondary objectives
include comparison of swirl velocity and other quantities for corresponding teeth-
on-stator and teeth-on-rotor generic labyrinth seals. The computer code of Sobolik

[5; was extended in various ways in order to achieve these objectives.
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PREVIOUS WORK

Qo

Most of the leakage oriented research has been aimed at developing simple

“’ - ‘4‘4

ernpirical relationships between the leakage flow rate and the overall pressure drop,
seal geometry, shaft speed and Reynolds number. Details such as velocity profiles
have only very recently become the objective of experimental researchers.

Work done on labyrinth seals can be classified into compressible fluid leakage,
incompressible fluid leakage and rotordynamic instability studies. The paper by
Sneck [6] and the theses by Cogan [7] and Sobilik [5] were invaluable in compiling

this review. The topic of instability is not addressed in this paper, and thus related

v »_t T :‘ﬂ '&_.l R

studies are not included.

Compressible Fluid Leakage Studies

[ T o}
p o= =y

Martin (8], Stodola [9], Gercke [10], Egli [11], Dolin and Brown {12}, Hodkinson

b

(13}, Kearton and Keh [14], Zabriskie and Sternlicht {15], Vermes {16], Rao and

:E::' Narayanamurthi [17], Deich, et al. [18] and Benvenuti {19] are examples of early :§
work with compressible flow seals. These studies drew conclusions based on gross \_.
") overall characteristics of the flowfield. These researchers made assumptions such as o
J:' constant flow area, uniform axial velocity profile or negligible turbulent kinetic ;‘1
';. energy carry-over. These assumptions greatly simplify the problem. However, ‘l
“ models developed in this way have been very limited in application. o
\j The first to take detailed measurements of compressible flow in labyrinth seals
: was Hauck [20]. He measured the axjal and swirl components of velocity in straight- i :
; through and stepped seals. Velocity profiles were measured both in the cavity as .
well as in the leakage region. Hauck's test facility operated at both 4000 and 5000 K
CPM, and allowed for rotor eccentricity up to 75 percent of the clearance for a .
o
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x Jerie [27], Bell and Bergelin [28], Nikitin and Ipatov [29] and Han [30]
. are examples of earlier studies dealing with gross overall characteristics. The
i conclusions reached by these researchers developed the application of flow and
< velocity carry-over coeflicients. critical Revnolds number for transition to turbulence
o
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concentric rotor.

Apparently the first to present a detailed numerical solution for the compress-
ible flowfield within a labyrinth seal were Rhode and Sobolik {4]. A finite difference
method was used employing Patankar’s [21]) SIMPLE (Semi-Implicit Method for
Pressure-Linked Equations) algorithm. Converged solutions were obtained using
each of two different finite differencing schemes: the Hybrid scheme developed by
Spalding (22}, and the QUICK scheme developed by Leonard [23]. Zimmermann
and Wolff {24] developed an analytical model for correlation of leakage and pressure-
drop. Previously obtained numerical solutions were used to integrate cavity exit
velocity profiles and compute standard loss coefficients for each cavity.

Kirk [25] developed a relatively simple computer program to calculate the
circumnferential swirl and pressure distribution. He computed a nondimensionalized
tangential velocity ratio and compared with previously obtained experimental
results. The experimental data reveals a reduction of swirl, as the flow moves
radially inward, that was not predicted. However, predicted and experimental
results for swirl never differed by more than 25 percent.

Nordmann, et al. [26] also used a finite difference program to simulate flow in
straight-through labyrinth seals. The effort was directed toward the fluid forces and
rotordynamic coefficients. But they also plotted leakage as a function of pressure

ratio, comparing against previous obtained experimentally results.
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and friction -oefficients.

Three recent studies constitute the first investigations pertaining to detailed
characteristics of velocity and pressure throughout a seal cavity. One was conducted
by Stoff {2]. He used a finite difference computer program descended from the
TEACH program to solve the Reynolds-averaged Navier-Stokes equations along
with those of the x — € turbulence model. Predictions as well as experimental
measurements of water in a large scale straight-through seal facility were obtained.
He compared predictions of a single radial profile of mean swirl velocity and rms
swirl velocity with corresponding experimental measurements for an axial station
midway between adjacent teeth.

Rhode. et al. [31] is the second detailed study. That paper reports comparison
predictions of two cavity configurations for a straight-through seal. A more recent
version of a swirl-flow finite difference computer program, also descended from
TEACH, was employed. Detailed radial profiles of the three velocity components,
pressure and turbulence kinetic energy were shown. In addition, a recent convective
differencing scheme was evaluated for numerical stability and accuracy.

Finally, Demko {32-34] conducted a study using both computational and ex-
perimental methods. He presented corresponding predictions and measurements of
selected quantities such as axial and radial velocity and pressure. By investigating
flow at relatively high Taylor numbers (typically Ta> 10*) he was able to com-
putationally and experimentally verify the existence of a double recirculation zone
pattern. He presented his results in the form of a flow map which one can use to
predict the existence of either a single versus a double recirculation zone within the

cavity.
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COMPUTATIONAL APPROACH

General Methodology

The compressible flow program for flow in labyrinth seals is a descendant of the
TEACH program [3]. Seven simultaneous, partial differential equations are solved.
These are: (a) the compressible, axisymmetric form of the Reynolds-averaged
equations for conservation of momentum (with x, r, and 6 time-mean velocity
components u, v, w), (b) the two turbulence transport equations constituting the
x — € turbulence model, (c) the energy equation, and (d) a pressure equation which
determines the pressure field and enforces conservation of mass. Each of these can

be divided into convection, diffusion and source term components and cast in the

general form
1.0 0
S log (purg) + 5, (PUTo)
0 0o 0 04 .,

—5;(Tr¢5;) a(TFc»ar) =S¢ (1)

Phi is the general dependent variable and T'y is the diffusive coefficient
respective to each equation. For example, in the x-momentum equation ¢ =
and I' = p.ss. The effects of turbulence are incorporated through modification of
the laminar-flow momentum diffusion coefficient u. The turbulent viscosity pr is

added to p giving an effective viscosity p,¢s which is given by

Peff = UT + p (2)

The two-equation k — € model [35] was utilized to evaluate pr.
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Figure 2 shows the staggered grid system on which the finite difference
equations are solved. Values for all variables except u and v are stored at the
intersections of the illustrated grid lines, such as point P. The axial and radial
velocity components are stored at locations denoted by arrows. Different control
volumes C, U and V for the variables stored at the p, w and s locations are shown
in Fig. 2. An example of the computational domain that has been chosen for a
labyrinth seal can be seen in Fig. 3.

Each ¢ has a corresponding finite-difference equation which was obtained from
Eqn. 1 by applying the Gauss Divergence Theorem and expressing the result
in terms of neighboring grid point values. The incorporation of the differencing
schemes is discussed in Rhode, et al. [31]. As an example, the axial momentum

equation from which u*, a velocity estimate, is computed is

apup = > a¥uj + Au(P - P;)+ S (3)
J

To satisfy conservation of mass locally, the values for u* and v* must undergo a
correction. This correction is accomplished using the pressure-correction P’ values.
The equation for this quantity is derived from conservation of mass and momentum
and is explained in further detail in a subsequent section. The expression for the

corrected axial velocity formulation is

up = u}, + D*(P,, ~ P}) (4)
Ay
Du = _T
aP

The radial velocity is corrected similarly. The P’ equation takes the form

e B
: N \'}_‘v‘:.-::r_‘:_\ NN PO N,
Mt A P S SN T A A AL

"WWL'-U‘\:TI"L"V'\,"-IT‘-LW',"!"'\_'-I"IWT

(o5 - S ) B a3 - — -

€l

NN SN

aL®_%_ s




S[[32 A pue n :
. pa1a83e)s Suimoys awin)oa joajuod [eord{y g 3tg

A ANV N HOd4 HYTIWIS ‘O 804 Mv aNv °v ‘Sy ‘Uy svauy
30V4 ‘A ‘N 'O SANNTOA TOHLNOD




Radle Ale Ao his S Bie Bba ide Ala JRle Sl Ate %, Bis B e S Bt Rty ¥ Gvp Sug Sie S<a 8- b db'a e aic 8 o o Nea WA S d- B Bt o 4 oS

oy Wl

?
e
~ 14
|
Il =1}2 3... NI ‘@
4 ‘1
_> _+ |
IN ' ouT %
-
®
- T
" 2
- i
\r )
y
!
|
rv '
e.w ¢ =
xX,u -
[
-:f :3
: R
y s
; Fig. 3 Computational domain for a labyrinth seal
- cavity showing a uniform coarse grid 2
< o,
- "
) .
W
W
w
“~




w

A R

‘l

. abPp = Z aiP; + 8% (5)
J

as discussed in Patankar [21].

For the previously considered incompressible flow cases [31], the flow could
be considered streamwise periodic. Thus, cavity inlet boundary conditions for all
variables excepting pressure were set equal to the newly calculated exit values at
the conclusion of each iteration. Flow at the cavity outlet is strongly convective in
nature, and thus the upwind differencing used there requires no outlet boundary
conditions. For the present compressible flow grid independence cases, the inlet
values resulting from the above procedure were adopted in dimensionless form.
Alternately, the cavity-by-cavity development computations used the exit values
from the previous successive cavity as the corresponding inlet values. Further, the
empirically-based law of the wall was used to evaluate normal derivatives of velocity

tangent to a given wall.
False Diffusion

The upwind differencing scheme has been used extensively, however, it can
introduce false diffusion. This truncation error occurs predominantly 1:: flows where
convection dominates (i.e., where the grid Peclet number |Pe! = %é exceeds 2.0)
with substantial streamline-to-grid skewness and substantial diffusion normal to the
streamlines.

False diffusion can cause an overly diffusive solution. Recirculating flows are
particularly susceptible to the eflects of false diffusion because of the certainty
of considerable velocity gradients and streamline-to-grid skewness. The QUICK

(Quadratic Upstream Interpolation for Convective Kinematics) scheme of Leonard
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(23] was_derived with the intention of reducing false diffusion. It employs a three-
point, upwind-shifted interpolation formula. Predictions for turbulent flows by
Leschziner and Rodi [36] and Han et al. [37] have indicated distinct advantages over
the Hybrid upwind/central differencing scheme. Moreover, comparisons between
the Hybrid and QUICK schemes for incompressible flow in labyriaih seal cavities
by Rhode, et al. [31] for example, showed that the QUICK scheme yielded grid-
independent solutions on considerably coarser grids than for the Hybrid scheme.
QUICK has been used in formulating the convective terms of the momentum
equations only. Leschziner and Rodi {36! showed the x and € solutions are not
significantly affected by alternative differencing schemes because of the source-term
dominance of the corresponding transport equations. The k and € source terms

contain the large generation and dissipation eflects.

Computational Devolopments

An improved version of the compressible-flow P’ equation was developed and
tested. The essence of the modifications are best understood afte‘r reviewing a
derivation of the P’ equation for a simple case of one-dimensional axial flow. The
derivation begins with the discretized form of the steady flow mass conservation

equation

(pu)e = (pu)u =0 (6)

Lower case subscripts refer to values at control volume faces. A typical control
volume for P'is shown in Fig. 2 as the C control volume. The mass flux through

the east face. for example, where the p_u, term has been neglected is
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« (pu)e=(p"+p")e(v" +u')e = plul + plul + pLul (7)

The quantities p* and u* are the latest estimates to be corrected via p’' and u' in
order to satisfy the mass conservation equation.
The previous version of the program used a formulation for the p' terms using

the ideal gas equation of state which gives

,_ 1., ., _1 P

Note that the expression for p, in Eqn. 8 is the simple arithmetic mean. It
was found in the present study that expressing p, in this way contributed to
numerical instabilities during the iterative solution algorithm. This effect was more
pronounced when the grid lines were non-uniformly distributed within the flow
domain. An alternative formulation of p, that reduced numerical instabilities when
using non-uniform grids was sought. Several variations were numerically tested for
a labyrinth cavity flowfield. Evaluation of p directly from the ideal gas equation of
state without using a p' quantity was an improvement over the p = p*--p' approach.
This led to an algorithm that is less susceptible to numerical instabilities. The

expression replacing Eqn. 7 is

(pu)e = pe(u” + u')e = peu, + Peu,c (9)

here p, is formulated using the harmonic mean expression

2pppE
Pe = — (10)
PP~ PE
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From the axial momentum equation, one finds the following expressions [21]

for velocity corrections

v, = D;(Pp — Pg) (11)

ul, = Dy(Piy ~ Pp)

e

A,
D} = oy
P
- D¥ = _Aﬁ
L=
4 ap ?23
Upon appropriate east and west face mass flux substitutions into Eqn. 6 the
following difference equation is obtained for P’ Si
A
A + Aw|Pp = ApPr + Aw Py, ~ Am” (12) E§
Ag = p. Dy
s
B
Aw = PwD::, e
=Y
-
Am® = pyuy, — peu, i
.?3
The P' equation used in the current computer program was derived from the N
two-dimensional flow mass conservation equation in cylindrical coordinates. The ~3
xN
N
s
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~ procedure exactly parallels that given here. Appropriately, P' = 0 along boundaries
"tl' was utilized for boundary conditions. |
. The TDMA (Tri-Diagonal Matrix Algorithm) is used to solve for the dependent ‘
variable of each finite difference equation in a line-by-line fashion. The previous |
m version of the code solved for one vertical column at a time, beginning at the west |
! boundary and sweeping line-by-line to the east boundary. This procedure causes
:::? the inlet boundary condition, usually at the west boundary, to be felt quickly by ‘
i interior points of the calculation domain. This desirable effect is greatly enhanced |
\‘ if the fluid flow is in the same direction as the line-by-line sweeping motion of the
TDMA. ‘
: The previous method of solving for vertical columns while sweeping from west ‘
x to east tends to work very well in the predominantly straight-through west to }
‘ east leakage flow region. It does not, however, efficiently incorporate the effect }
"':‘ of boundary conditions within the recirculation zone of the cavity. For this reason |
) an ADI sweeping procedure was implemented. It alternates between west-east and
"\ north-south sweeps, solving for vertical columns and horizontal rows, respectively.
. In this way, information from the boundary conditions is efficiently transmitted to
all regions of the flow domain.
i
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RESULTS AND DISCUSSION

The Seals Considered

In order to investigate the cavity-by-cavity distribution of various quantities, a
TOS and also a TOR seal were simulated. The TOS cavities had a shaft radius of
0.0725 m, shaft centerline-to-cavity base radius of 0.07609 m and shaft centerline-
to-tooth periphery radius of 0.07291 m. The TOR cavities had a shaft radius of
0.0725 m, a shaft centerline-to-stator radius of 0.07609 m, and shaft centerline to
tooth periphery radius of 0.07568 m. Both seals had a cavity width of 0.002825 m
and a tooth width of 0.00035 m.

Grid Independence

Figure 4 illustrates the effect of inlet leakage Mach number on grid indepen-
dence. A uniform inlet temperature of 293°K was assumed. After an inlet leakage

Mach number M; was selected, the inlet stator wall pressure was set to a value

vielding an inlet leakage Reynolds number of Re, = pU‘:2c = 2.60 x 10%. Ax-

ial velocity and turbulence kinetic energy profiles were computed from a fourth-
order curve fit of an incompressible flow problem previously simulated [31]. The
shaft rotational speed was set to 8000 CPM and the radial distribution of inlet

swirl velocity was taken from the measurements of Stoff [2]. This gives an inlet

Reg = ”W‘;‘h = 2.39 x 10* and 6.99 x 10° for the TOS and TOR cavities, respec-
tively, at M; = 0.2. The respective values at M; = 0.5 are 9.55 x 10° and 2.19 x 103.

The variation of cavity bulk pressure drop AP* with inlet Mach number M; is
shown in Fig. 4 for the teeth-on-stator (TOS) seal design. As expected, A; = 0.2

possesses less grid size dependence than Af; = 0.5. The solution obtained using a
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35x45 (x and r direction) grid is essentially grid independent near M; = 0.2. The
change in AP* at M; = 0.2 was approximately five percent in changing from the
20x30 to the 35x45 grid. This will be substantially less for a similar comparison
using 35x45 and 50x60 grids. Observe the increased dependency on grid spacing at
M, = 0.5. This is attributed to the much higher pressure gradients, and in turn,
density gradients at the higher Mach numbers.

Almost identical behavior was found for the teeth-on-rotor (TOR) design,
which is not shown here. However, the value from the 65x75 grid at M; = 0.5
for the TOR design is 0.474, whereas the corresponding value for the TOS design
is 0.429. This indicates that the TOR design provides around 10.5 percent greater
flow resistance. Stated differently, for a given AP*, the TOR seal is expected to
give less leakage. This agrees with a corresponding experimental comparison wherg
both seals contained fifteen cavities of the present design.

Figure 5 shows the streamline pattern in a TOS generic labyrinth seal for
M, = 0.5. It is similar to that for incompressible flow in a similar generic seal
in the paper by Rhode et al. [31]. The reattachment stagnation point in close
proximity to the high speed leakage flow region gives rise to large velocity gradients

just upstream of the downstream tooth.

Cavity-by-Cavity Flowfield Development

The following results were obtained by utilizing the finit- difference code to
simulate the flowfield development through a labyrinth seal, one cavity at a time.
Figure 1 illustrates the cavity numbering scheme which is utilized in the following
discussion. At the inlet to the first cavity a leakage Mach number of 0.3 was

assumed. A uniform temperature profile of 300° A" was used as well as a uniform
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axial velocity profile. The inlet radial component of velocity was assumed to be
zero. An inlet axial leakage Reynolds number of 32,000 was assumed. A uniform
inlet profile of turbulence kinetic energy was used and a value of 3 percent of the ‘

mean flow kinetic energy was specified. The shaft speed was set to 9500 RPM.

Results were obtained using two different values of non-dimensional bulk swirl
velocity W for comparison. The TOS cases were run at W of 0.0 and 0.58, while
the TOR cases had W of 0.0 and 0.49. These non-zero inlet swirl cases give an
Reg of 1.29 x 10° and 1.14 x 10%, respectively. These values of W; were selected as
estimates of the inlet swirl resulting from rotating machinery upstream of the seal.

After obtaining a converged solution for the first cavity, the field variable values
at the cavity exit plane are used as inlet values for the next cavity. Thus it was
possible to simulate the flow development along the labyrinth seal by approximating
inlet conditions for the first cavity and then proceeding downstream one cavity at
a time.

For the TOS case of zero inlet swirl, Fig. 6 shows the increase of W? with an-
almost constant slope. This result will be useful to the developers of simple flow
models for calculating the net rotordynamic force which arises when the rotor is
eccentric with respect to the housing. It is particularly noteworthy in this regard
that the calculation of correct rotordynamic forces is sensitive to the correctly
simulated distribution of W. Further there are no previous measurements or
predictions of this distribution so that the developers of simple models have been
unable to verify this aspect of their modeling. Thus it is significant that VFig. 6

shows a slow rate of growth of W*. In fact, such generic TOS seals with as many

as fifteen cavities never even approach the asymptotic value which is expected to

be slightly less than 0.5. Figure 7 shows a linear decrease for the TOS case of

.
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W = 0.58 and thus indicates an asymptotic value for W} which is slightly less
than 0.5.

The distributions shown in Figs. 8 t-.ough 10 reveal changes in the field
variables as the flow proceeds cavity-by-cavity downstream. The axial velocity
distributions of Fig. 8 indicate that this quantity has become essentially streamwise
periodic within the third cavity. Even though Figs. 6 and 7 showed an almost linear
development of W', the detailed distributions in Fig. 9 show a significantly non-
linear rate of increase within the recirculation zone in the cavity region. The large
turbulent shear stress 7.9 on the shaft gives rise to the shape of each radial profile
near the shaft. Finally, Fig. 10 shows the effect of radial turbulent diffusion on
turbulence energy development in the leakage region. This is most clearly shown
for the developing profile in the first cavity. Although not shown here, the radial
velocity profiles showed very little change.

The leakage Mach number increased from a value of 0.30 at the inlet of the
first cavity to 0.33 at the exit of the fifth. By locating M; = 0.33 on Fig. 4, one
can determine that the 35x45 grid used for the swirl growth investigation was fine
enough to avoid grid independence problems.

The TOR results for the W* development shown in Figs. 11 and 12 are very

similar to those for the corresponding TOS cases. One important difference however,

is the much higher growth rate for the TOR case. The slow linear growth exhibited
in Fig. 12 indicates that W is close to its asymptotic value which from these
predictions is apparently near 0.55. This result is somewhat different from that for
incompressible flow through a similar cavity by Rhode, et al. [31] indicating an
asymptotic W value of 0.65.

Figures 13 through 15 correspond to Figs. 8 through 10 for the TOS cases and
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CAVITY

Fig. 11 Cavity-by-cavity development of
dimensionless inlet swirl W? for TOR
with W?* = 0.0 at the first cavity
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36
most of the results are nearly identical to those for TOS. Major items of interest
again are approximate streamwise periodicity for axial velocity at the third cavity
and swirl profile development. One difference between corresponding TOS and TOR
cases is the swirl velocity profile in the leakage flow region. For the TOS case, Fig.
9 shows a larger ¥ than does Fig. 14 for TOR. This is due to the fact that the
large shear stress 7,.¢ on the shaft acts on the leakage flow over the entire length
from cavity inlet to outlet for the TOS case.

Figure 16 clearly contrasts the faster swirl growth rate of TOR over TOS. This
leads to a higher asymptotic swirl velocity for TOR. Again, this is of significance

to designers interested in analyzing rotordynamic forces on the shaft.
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{ A finite difference computer program for predicting compressible, axisymmetric
Lrs
TSt . . - o . . .
Tk flow in labyrinth seals was used in investigating cavity-by-cavity growth of swirl
I
]
:.":{' velocity and leakage Mach number effect on grid independence. Due to a current
Yo
' ] lack of experimental data from compressible flow labyrinth seals, the results of this
+ \.i
:.r:',:: computational study cannot be verified.
-'A: The Fanno flow behavior computed herein for the compressible flow in labyrinth
D" N
& seals is well known. The steady increase in Mach number from one cavity to the next
G
:\J translates into a significant decrease in density and pressure. These in turn were
¥ _'hn <
:: found to give rise to a considerable grid dependence sensitivity at Mach numbers
--\-
L~ . - . .
° above approximately 0.4. Furthermore, predictions for corresponding TOR and
-

TOS cavity designs with the same flow area and leakage rate showed that the TOR d

N
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.’. . - -
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cavity had approximately ten percent greater dimensionless pressure drop than the ~

N
v Ye e

TOS cavity. Thus, for a given pressure drop the TOR cavity is expected to leak

2

"
=
o less.
b -.\.
'_}-}' Several conclusions concerning the cavity-by-cavity flowfield development can
o
“~
; also be drawn from the predictions presented. For example, it was clearly shown
'.:::: that the cavity-by-cavity swirl velocity development 1s fairly slow. It is anticipated
{“-', {
:-‘;: that these values will prove helpful to the developers of simple models for predicting :
O
the rotordvnamic fluid forces on such seals when the rotor is eccentric relative to
. s
-,':’,'w the stator. Specifically, such previously unavailable values may serve as a swirl
g -

development prediction test case for such models, as the forces are sensitive to ‘

swirl velocity. Moreover, the TOS seals develop swirl velocity at a considerably

v

slower rate than do TOR seals. This indicates that TOS seals are less likely to have
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significant destabilizing fluid forces which drive the rotor in the detrimental whirling
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motion. Thus, the greater leakage tendency of TOS seals offsets this advantage of
slower swirl velocity development.
i In addition, the prediction of cavity-by-cavity flow development for Mach
‘I:
o numbers near 0.3 indicates that, except for swirl velocity, most quantities are
u essentially streamwise periodic after the second cavity.
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